期刊文献+

基于压缩特征的鱼眼视频目标跟踪算法研究 被引量:4

Research on Target Tracking Algorithm from Fisheye Camera Based on Compressive Sensing
下载PDF
导出
摘要 该文针对畸变严重的鱼眼图像中的目标跟踪,提出一种能适应尺度变化、姿态变化以及形状畸变的鱼眼视频目标跟踪的方法。该方法首先将灰度特征和相对梯度特征相结合得到目标的高维特征,然后对其平均降维得到目标的压缩特征。并根据鱼眼成像模型得到投影点的运动特性,确定目标的运动范围。为了适应尺度变化,在块匹配运动估计思想的基础上,对目标跟踪框的顶点分别进行由粗到精的定位,并在此过程中根据跟踪框的尺度相应改变压缩特征的尺度。实验结果表明:该算法在目标畸变、尺度变化、姿态变化以及局部遮挡等情况下,判断指标均优于其他对比算法。 For object detection in fisheye images which present serious distortion, an object tracking method is proposed to deal with scale variance, pose change and distortion. Firstly, gray feature and gradient feature are combined to obtain a high dimensional feature of the target, then reduce its dimensionality by averaging to obtain target’s compressive feature. According to fisheye imaging model, motion of object point is modeled, and range of motion of target is “predicted”. In order to adjust to scale variance, corner points are positioned respectively in a coarse to fine manner based on the block matching motion estimation, and the scale of compressed feature is changed along with scale change of object box. Experimental results show that the proposed algorithm is superior to other algorithms in the case of distortion, scale change, pose change and part occlusion.
作者 李雅倩 贾璐 李海滨 张文明 张岩松 LI Yaqian;JIA Lu;LI Haibin;ZHANG Wenming;ZHANG Yansong(Key Laboratory of Industrial Computer Control Engineering of Hebei Province,Yanshan University,Qinhuangdao 066004,Chin)
出处 《电子与信息学报》 EI CSCD 北大核心 2018年第5期1242-1249,共8页 Journal of Electronics & Information Technology
基金 河北省自然科学基金(F2015203212)~~
关键词 目标跟踪 鱼眼成像模型 相对梯度特征 压缩特征 块匹配运动估计 Target tracking Fisheye imaging model Gradient feature Compression feature Block matching motion estimation
  • 相关文献

参考文献2

二级参考文献20

  • 1田铁印.复杂光学系统初始结构的求解方法及程序设计[J].光学精密工程,1993,1(2):1-8. 被引量:2
  • 2王永仲.红外热成像鱼眼镜头设计中若干特殊问题的处理[J].光子学报,2005,34(7):1078-1080. 被引量:19
  • 3吴福田,冯书文.红外成象三片分离物镜设计[J].红外技术,1997,19(1):26-28. 被引量:2
  • 4Donoho D L. Compressed sensing [J]. Information Theory,IEEE Transactions on, 2006,52(4) : 1289-1306.
  • 5Li H, Shen C, Shi Q. Real-time visual tracking usingcompressive Sensing[C]//Computer Vision and Pattern Recognition ( CVPR ) , 2011 IEEE Conference on.IE EE,2011:1305-1312.
  • 6Zhang K , Zhang L , Yang M H. Real-time compressivetracking [C]//Computer Vision-ECCV 2012. SpringerBerlin Heidelberg, 2012 : 864-877.
  • 7Candes E J , Tao T. Near-optimal signal recovery fromrandom projections and universal encoding strategies,submitted to IEEE Trans[J]. Inform. Theory,2005,51(12)=4203-4215.
  • 8Achlioptas D. Database-friendly random projections :Johnson-Lindenstrauss with binary coins[J]. Journal ofComputer and System Sciences,2003,66(4) :671-687.
  • 9Baraniuk R , Davenport M , DeVore R , et al. A simpleproof of the restricted isometry property for randommatrices [J] . Constructive Approximation, 2008, 28( 3 ) :253-263.
  • 10Babenko B , Yang M H, Belongie S. Visual tracking with online multiple instance learning [C]//ComputerVision and Pattern Recognition, 2009. CVPR 2009.IEEE Conference on. IEEE, 2009 :983-990.

共引文献19

同被引文献55

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部