期刊文献+

Restricted Lie 2-algebras

Restricted Lie 2-algebras
原文传递
导出
摘要 In this article, we introduce the notions of restricted Lie 2-algebras and crossed modules of restricted Lie algebras, and give a series of examples of restricted Lie 2-algebras. We also construct restricted Lie 2-algebras from A(m)-algebras, restricted Leibniz algebras, restricted right-symmetric algebras. Finally, we prove that there is a one-to-one correspondence between strict restricted Lie 2-algebras and crossed modules of restricted Lie algebras. In this article, we introduce the notions of restricted Lie 2-algebras and crossed modules of restricted Lie algebras, and give a series of examples of restricted Lie 2-algebras. We also construct restricted Lie 2-algebras from A(m)-algebras, restricted Leibniz algebras, restricted right-symmetric algebras. Finally, we prove that there is a one-to-one correspondence between strict restricted Lie 2-algebras and crossed modules of restricted Lie algebras.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2018年第6期933-946,共14页 数学学报(英文版)
基金 Supported by ZJNSF(Grant Nos.LY17A010015 and LZ14A010001) NNSF(Grant No.11171296)
关键词 Restricted Lie 2-algebra crossed module of restricted Lie algebra A(m)-algebra restricted Leibniz algebra restricted right-symmetric algebra Restricted Lie 2-algebra, crossed module of restricted Lie algebra, A(m)-algebra, restricted Leibniz algebra, restricted right-symmetric algebra
  • 相关文献

参考文献1

二级参考文献17

  • 1Alekseevsky D, Michor P W, Ruppert W. Extensions of Lie algebras, arXiv:math.DG/0005042.
  • 2Alekseevsky D, Michor P W, Ruppert W. Extensions of super Lie algebras. J Lie Theory, 2005, 15:125-134.
  • 3Baez J C, Crans A S. Higher-dimensional algebra, VI. Lie 2-algebras. Theory Appl Categ, 2004, 12:492 538.
  • 4Brahic O. Extensions of Lie brackets. J Geom Phys, 2010, 60:352-374.
  • 5Dehling M. Shifted Lo-bialgebras. Master Thesis, GSttingen University, 2011.
  • 6Eilenberg S, Maclane S. Cohomology theory in abstract groups, II. Group extensions with non-abelian kernel. Ann Math, 1947, 48:326-341.
  • 7Hochschild G. Cohomology classes of finite type and finite dimensional kernels for Lie algebras. Amer J Math, 1954, 76:763-778.
  • 8Inassaridze N, Khmaladze E, Ladra M. Non-abelian cohomology and extensions of Lie algebras. J Lie Theory, 2008, 18:413-432.
  • 9Lada T, Stasheff J. Introduction to sh Lie algebras for physicists. Int J Theo Phys, 1993, 32:1087-1103.
  • 10Lada T, Markl M. Strongly homotopy Lie algebras. Comm Alg, 1995, 23:2147 2161.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部