期刊文献+

基于自学习算法的BCG信号处理方法 被引量:2

BCG signal processing method based on self-learning algorithm
下载PDF
导出
摘要 针对心冲击描记(BCG)信号中心跳波形缺乏确定模型且受多种因素影响的特点,提出了基于自学习的心跳识别算法。使用聚类分析的方法,有效提取了BCG信号中具有高度相关性的一组曲线,并将其作为心跳模型。将心跳模型与BCG信号进行匹配,捕捉到心跳信号进而得到心跳周期。经实验验证:算法得出的心跳周期误差在±2%以内,并在Android平台上进一步验证了其准确性和实用性。 Aiming at problem that in ballistocardiogram(BCG) signal heartbeat waveform has characteristics of no certain model and is influenced by various factors,propose a heartbeat recognition algorithm based on self-learning.During self-learning process,a group of curves with high correlation which are extracted from the BCG signals by means of clustering analysis,and make it as heartbeat model.The heartbeat model is matched with BCG signals,so catch heartbeat signal,so as to obtain heartbeat cycle.By experimental verification,error of heartbeat cycle which is calculated based on this algorithm is within ±2 %,besides,the algorithm is proved to be accurate and practical on Android platform.
作者 王炬 王田苗 栾胜 倪自强 WANG Ju;WANG Tian-miao;LUAN Sheng;NI Zi-qiang(School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China)
出处 《传感器与微系统》 CSCD 2018年第4期41-43,47,共4页 Transducer and Microsystem Technologies
基金 北京市科技计划重大项目(D141100003614003)
关键词 心冲击描记 心率监测 自学习 聚类分析 ballistocardiogram(BCG) heart rate monitor self-learning clustering analysis
  • 相关文献

参考文献3

二级参考文献34

  • 1刘洪君,姚翠玲,许占英,任立新.呼吸操对慢性阻塞性肺病患者肺功能及血气的影响[J].临床肺科杂志,2006,11(1):63-64. 被引量:70
  • 2张政波,王卫东,吴昊,李开元,昂清.全数字呼吸感应体积描记技术[J].中国医疗器械杂志,2007,31(3):179-181. 被引量:7
  • 3Alihanka J, Vaahtoranta K, Saarikivi I. A new method for long-term monitoring for the ballistocardiogram, heart rate and respiration[J ]. American Journal of Physiology, 1981, 240(5) :384 - 392.
  • 4Inan T, Etemadi M, Wiard R M, et al. Robust ballistocardiogram acquisition for home monitoring [ J ]. Physiological Measurement, 2009,30(2) :159 185.
  • 5Noh Y H, Jeong D U. Implementation of unconstrained ballistocardiogram monitoring system for ubiquitous healthcare[Jl. Sensor Letters, 2011,9(1) :228 - 233.
  • 6Smrcka P, Jirina M, Trefeym Z, et al. New method for precise detection of systolic complex in signal acquired from quantitative seismocardiograph [ C 1 // IEEE International Workshop on Intelligent Signal Processing. Kobe: IEEE, 2005 : 375 - 380.
  • 7Titan Micro Electronics. TM7708 [ EB/OL ]. ( 2011 - 05 - 10) [2011 - 11 - 10]. http: //www. titanmec, com/docc/ product-downloads-79, html.
  • 8Cherif L H, Debbal S M, Bereksi-Reguig F. Choice of the wavelet analyzing in the phonocardiogram signal analysis using the discrete and the packet wavelet transform[ J ]. Expert Systems with Applications, 2010,37(2) :913 - 918.
  • 9Wiard R M, Inan O T, Argyres B, et al. Automatic detection of motion artifacts in the ballistocardiogram measured on a modified bathroom scale [ J ]. Medical and Biological Engineering and Computing, 2011,49 ( 2 ) : 213 - 220.
  • 10Gilaberte S, Gomez-Clapers J, Casanella R, et al. Heart and respiratory rate detection on a bathroom scale based on the ballistocardiogram and the continuous wavelet transform [ C] //Engineering in Medicine and Biology Society (EMBS), 2010. Annual International Conference of the IEEE. Buenos Aires, 2010 : 2557 - 2560.

共引文献21

同被引文献8

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部