期刊文献+

射电天文图像恢复的改进方法

Improved method for radio astronomy image restoration
下载PDF
导出
摘要 天线接收到天体的频域值,经傅里叶逆变换得到了天体的亮度分布图。由于天文观测站天线数量有限,只能接收到部分的频域数据,为了达到更好的视觉效果,对天体亮度分布图进行图像恢复。在数学上,天文图像恢复主要处理欠采样样本的还原,采用洁化算法与最大熵方法来进行处理,两种方法未从根本上解决欠采样样本的还原问题。通过基于压缩感知理论与最大熵方法相结合的方法对欠采样的射电太阳图像进行恢复,得到了不错的效果。 By Fourier inverse transform,frequency domain value of celestial body received by antenna gets luminance distribution map of celestial. However,due to the limited number of antennas in the astronomical observatory,only partial data of frequency domain can be received. In order to achieve better visual effects,image restoration for brightness distribution map of astronomical objects is needed. In mathematics,astronomical image restoration is mainly aimed at dealing with the reduction process of undersampled samples.Use cleaning algorithm and the maximum entropy method to process.But these two methods do not fundamentally solve the problem of the reduction of the undersampled sample. The method combining the compressed sensing theory and the maximum entropy method is used to restore the radio solar image under the under sampling,and the effect is good.
作者 卫明 袁梅宇 张秋明 王赟 WEI Ming;YUAN Mei-yu;ZHANG Qiu-ming;WANG Yun(Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650000, China;Yangquan High-tech Innovation Service Center, Yangquan 045000, China)
出处 《传感器与微系统》 CSCD 2018年第4期54-57,61,共5页 Transducer and Microsystem Technologies
基金 国家火炬计划产业化环境建设项目(2015GH511343)
关键词 射电天文图像 信号采样 压缩感知 最大熵 压缩感知与最大熵相结合 radio astronomical images signal sampling compressed sensing maximum entropy compressedsensing and maximum entropy
  • 相关文献

参考文献3

二级参考文献48

  • 1卿利,朱清新,王明文.异构传感器网络的分布式能量有效成簇算法[J].软件学报,2006,17(3):481-489. 被引量:159
  • 2李成法,陈贵海,叶懋,吴杰.一种基于非均匀分簇的无线传感器网络路由协议[J].计算机学报,2007,30(1):27-36. 被引量:373
  • 3方红,章权兵,韦穗.基于非常稀疏随机投影的图像重建方法[J].计算机工程与应用,2007,43(22):25-27. 被引量:27
  • 4Donoho D L. Compressed sensing. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
  • 5Candes E, Romberg J, and Tao T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, 2006, 52(2): 489-509.
  • 6Candes E. Compressive sampling. Int. Congress of Mathematics, Madrid, Spain, 2006, 3: 1433-1452.
  • 7Baraniuk R G. Compressive sensing. IEEE Signal Processing Magazine, 2007, 24(4): 118-124.
  • 8Brandenburg K. MP3 and AAC explained. AES 17th international conference on High-Quaiity Audio coding, Erlangen, Germany, Sept. 1999: 1-12.
  • 9Pennebaker W and Mitchell J. JPEG: Still image data compression standard. Van Nostrand Reinhold, 1993.
  • 10Candes E and Romberg J. Sparsity and incoherence in compressive sampling. Inverse Problems, 2007, 23(3):969-985.

共引文献84

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部