期刊文献+

脉冲推力作用的伸缩腿机器人半被动行走控制

Semi passive walking control of robot with telescopic legs based on impulsive force
下载PDF
导出
摘要 针对双足机器人半被动行走过程造成能量损失问题,提出了足部运用脉冲推力,腿部添加伸缩装置,两者结合补充损失能量的新思路。被动行走机器人可以在摆动腿与地面冲击造成能量损失瞬间,通过支撑腿足部的脉冲推力做功,或在行走过程中通过支撑腿的伸缩做功,来补充损失能量。将两种能量补充方式相结合,使用杆长可变的倒立摆机器人模型,以支撑腿的伸缩做功和支撑腿离开地面前的脉冲推力做功作为机器人行走的能量补充,采用庞加莱映射方法分析了双足机器人行走的固定点的存在性及系统稳定性,并通过系统仿真验证了这一思路的正确性。仿真结果表明,采用脉冲推力做功与伸缩腿做功相结合的方法,可以实现双足机器人地面上更快速稳定的行走。 To solve the problem of energy loss caused by semi passive walking of biped robot,we put forward a new idea of using pulse thrust on foot and leg expansion device to supplement the loss energy. The moment energy loses from the impact of swinging leg on the ground,the passive walking robot can replenish the loss of energy by impulse thrust of the supporting leg or supporting leg expansion during walking. Combining the two kinds of energy supplement,the robot model of inverted pendulum with variable length is applied. By taking support leg stretching work and impulse acting before support legs leave the ground as the energy supplement,using Poincare mapping method to analyze the existence and stability of the fixed point system of biped robot walking,the correctness of this idea is verified by system simulation. The simulation results show that the method of combining the work with using pulse thrust and the work of the expansion leg can be used to achieve a faster and more stable walking on the ground.
作者 田文龙 张奇志 周亚丽 TIAN Wenlong;ZHANG Qizhi;ZHOU Yali(School of Automation ,Beijing Information Science & Technology University, Beijing 100192, China)
出处 《北京信息科技大学学报(自然科学版)》 2018年第2期49-53,共5页 Journal of Beijing Information Science and Technology University
基金 国家自然科学基金资助项目(11172047)
关键词 双足机器人 被动行走 脉冲推力 伸缩腿 稳定点 walking robot passive walking impulsive force telescopic leg stable point
  • 相关文献

参考文献9

二级参考文献71

  • 1付成龙,陈恳.五杆四驱动平面双足机器人动态步态规划与非线性控制[J].机器人,2006,28(2):206-212. 被引量:8
  • 2毛勇,王家廞,贾培发,韩灼.双足被动步行研究综述[J].机器人,2007,29(3):274-280. 被引量:24
  • 3Hirai K, Hirose M, Haikawa Y, et al. Development of Honda humanoid robot[A]. Proceedings of the IEEE International Conference on Robotics and Automation[C]. Piscataway, NJ, USA: IEEE, 1998. 1321-1326.
  • 4McGeer T. Passive dynamic walking[J]. The International Journal of Robotics Research, 1990, 9(2): 62-82.
  • 5Collins S, Ruina A, Tedrake R, et al. Efficient bipedal robots based on passive-dynamic walkers[J]. Science, 2005, 307 (5712): 1082-1085.
  • 6Asano F, Yamakita M, Kamamichi N, et al. A novel gait generation for biped walking robots based on mechanical energy constraint[J]. IEEE Transactions on Robotics and Automation, 2004, 20(3): 565-573.
  • 7Ono K, Takahashi R, Shimada T. Self-excited walking of a biped mechanism[J]. The International Journal of Robotics Research, 2001, 20(12): 953-966.
  • 8Goswami A, Espiau B, Keramane A. Limit cycles in a passive compass gait biped and passivity-mimicking control laws[J]. Autonomous Robots, 1997, 4(3): 273-286.
  • 9詹佩璇.神经生物学[M].台北:合记图书出版社,2004.121-141.
  • 10Basmajian J V. The human bicycle: An ultimate biological convenience[J]. Orthopedic Clinics of North America, 1976, 7(4): 1027-1029.

共引文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部