摘要
Near-infrared (NIR) fluorescent metal nanodots may have significant advantages in biological detection and bioimaging. Herein, we introduce tunable near-infrared fluorescent gold nanodots (AuNDs) protected by branched polyethylenimine (PEI) modified by surface segmental attachment of sulfhydryl groups (PEI-SH), abbreviated as PEI-SH-AuNDs, for simultaneous gene delivery and cell imaging. The modified PEI endows the resultant PEI-SH-AuNDs with the following excellent advantages. Sulfhydryl groups of PEI-SH anchor to the surface of AuNDs, and such polycations with amine groups give PEI-SH-AuNDs remarkable stability. The cationic polymer PEI-SH with positive charges enables PEI-SH-AuNDs to perform gene delivery, and the gene transfection efficiency can reach 22.8%. Moreover, the fluorescence of PEI-SH-AuNDs is tunable from visible red light (wavelength 609 nm) to NIR light (wavelength 811 run) via an increase in the size of AuNDs. PEI-SH-AuNDs yielded gene transfection efficiency similar to that of commercial PEI, but showed much lower cytotoxicity and much greater red-shift fluorescence. With excellent photoluminescent properties, such multifunctional fluorescent PEI-SH-AuNDs hold promise in applications to bioimaging and as ideal fluorescent probes for tracking gene transfection behavior.
Near-infrared (NIR) fluorescent metal nanodots may have significant advantages in biological detection and bioimaging. Herein, we introduce tunable near-infrared fluorescent gold nanodots (AuNDs) protected by branched polyethylenimine (PEI) modified by surface segmental attachment of sulfhydryl groups (PEI-SH), abbreviated as PEI-SH-AuNDs, for simultaneous gene delivery and cell imaging. The modified PEI endows the resultant PEI-SH-AuNDs with the following excellent advantages. Sulfhydryl groups of PEI-SH anchor to the surface of AuNDs, and such polycations with amine groups give PEI-SH-AuNDs remarkable stability. The cationic polymer PEI-SH with positive charges enables PEI-SH-AuNDs to perform gene delivery, and the gene transfection efficiency can reach 22.8%. Moreover, the fluorescence of PEI-SH-AuNDs is tunable from visible red light (wavelength 609 nm) to NIR light (wavelength 811 run) via an increase in the size of AuNDs. PEI-SH-AuNDs yielded gene transfection efficiency similar to that of commercial PEI, but showed much lower cytotoxicity and much greater red-shift fluorescence. With excellent photoluminescent properties, such multifunctional fluorescent PEI-SH-AuNDs hold promise in applications to bioimaging and as ideal fluorescent probes for tracking gene transfection behavior.
基金
This work was supported by the National Natural Science Foundation of China (Nos. 51503085, 51373061 and 21304090), Science Foundation of China University of Petroleum, Beijing (No. 2462017YJRC027), open project of state key laboratory of supramolecular structure and materials (No. sklssm201724) and Graduate Innovation Fund of Jilin University (Project 2016112).