期刊文献+

An improved brain emotional learning algorithm for accurate and efficient data analysis 被引量:1

基于改进大脑情感学习算法的有效数据分类(英文)
下载PDF
导出
摘要 To overcome the deficiencies of high computational complexity and low convergence speed in traditional neural networks, a novel bio-inspired machine learning algorithm named brain emotional learning (BEL) is introduced. BEL mimics the emotional learning mechanism in brain which has the superior features of fast learning and quick reacting. To further improve the performance of BEL in data analysis, genetic algorithm (GA) is adopted for optimally tuning the weights and biases of amygdala and orbitofrontal cortex in BEL neural network. The integrated algorithm named GA-BEL combines the advantages of the fast learning of BEL, and the global optimum solution of GA. GA-BEL has been tested on a real-world chaotic time series of geomagnetic activity index for prediction, eight benchmark datasets of university California at Irvine (UCI) and a functional magnetic resonance imaging (fMRI) dataset for classifications. The comparisons of experimental results have shown that the proposed GA-BEL algorithm is more accurate than the original BEL in prediction, and more effective when dealing with large-scale classification problems. Further, it outperforms most other traditional algorithms in terms of accuracy and execution speed in both prediction and classification applications. 提出了采用遗传算法优化大脑情感学习模型的方法。大脑情感学习(BEL)模型是一种计算模型,由Morén等人于2000年根据神经生理学上的发现提出。该模型根据大脑中杏仁体和眶额皮质之间的情感学习机制建立,不完全地模拟了情感刺激在大脑反射通路中的信息处理过程。大脑情感学习模型具有结构简单、计算复杂度低、运算速度快的特点。为了进一步提高模型的精度,采用遗传算法优化调整大脑情感学习模型的权值,构造具有强泛化能力的大脑情感学习数据分析模型,并用于数据预测与数据分类两方面。在数据预测方面,采用典型的磁暴环电流指数Dst时间序列作为测试数据。实验结果表明,从均方差MSE和线性相关性R指标来看,GA-BEL算法的误差小、相关度高,说明该算法用于预测的有效性。在分类方面,采用8个典型的UCI数据集和一个典型的头部磁共振图像数据集(fMRI)作为测试数据。分类实验结果表明,GA-BEL算法的分类正确率高,运算速度快于传统算法,说明该算法用于分类的有效性。
作者 梅英 谭冠政
出处 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第5期1084-1098,共15页 中南大学学报(英文版)
基金 Project(61403422)supported by the National Natural Science Foundation of China Project(17C1084)supported by Hunan Education Department Science Foundation of China Project(17ZD02)supported by Hunan University of Arts and Science,China
关键词 PREDICTION CLASSIFICATION brain emotional learning genetic algorithm 预测 分类 大脑情感学习 遗传算法
  • 相关文献

参考文献2

二级参考文献28

  • 1张丽琼,王炳和.基于小波变换的脉象信号特征提取方法[J].数据采集与处理,2004,19(3):323-328. 被引量:14
  • 2熊蓉,张翮,褚健,何臻峰,吴永海.四轮全方位移动机器人的建模和最优控制[J].控制理论与应用,2006,23(1):93-98. 被引量:25
  • 3EFENDI M S, MOHAMED R, SAZALI Y. Designing omni- directional mobile robot with mecanum wheel [ J ]. American Journal of Applied Sciences, 2006, 3(5): 1831-1835.
  • 4BAHAA I K, ALl H H, MUSTAFA M M. Modified vector field histogram with a neural network learning model for mo- bile robot path planning and obstacle avoidance[ J]. Interna- tional Jouranl of Advancements in Computing Technology, 2010, 2(5) : 166-173.
  • 5ALI H H, FATIMA B I. Path lanning of mobile robot based on modification of vector field histogram using neuro-fuzzy algorithm [ J ]. International Journal of Advancements in Computing Technology, 2010, 2(3) : 129-138.
  • 6MARYAM R, MOHAMMAD H K, MOHAMMAD A N, et al. Designing the fuzzy controller in mobile robot navigation with the presence of unknown obstacles [ J ]. International Journal of Intelligent Information Processing, 2012, 3 ( 1 ) : 45-62.
  • 7ALBERTO V, CARL T, BENGT L, et al. Modeling and op- timization of energy consumption in cooperative multi-robot systems[ J ]. IEEE Transactions on Automation Science and Engineering, 2012, 9(2): 423-428.
  • 8ELEFTHERIA S S, GEORGE S S, ANASTASIOS D P. Op- timal robot speed trajectory by minimization of the actuator motor electromechanical losses [ J ]. Journal of Intelligent and Robotic Systems, 2002, 33: 187-207.
  • 9LUCAS C, SI-IAHMIRZADI D, SI-IEIKHOLESLAMI N. Introducing BELBIC : brain emotional learning based intel- ligent controller [ J ]. International Journal of Intelligent Automation and Soft Computing, 2004, 10( l ) : 11-22.
  • 10MEHRABIAN A R, LUCAS C. Emotional learning based intelligent robust adaptive controller for stable uncertain nonlinear systems [ J ]. International Journal of Computa-tional Intelligence, 2005, 2(4) : 1304-4508.

共引文献7

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部