期刊文献+

基于优化BP神经网络的高准确度软件缺陷预测应用研究 被引量:5

Application Research of High Accuracy Software Defect Prediction Based on Optimized BP Neural Network
下载PDF
导出
摘要 针对软件缺陷测试任务中的准确度问题,提出一种基于优化BP神经网路的软件缺陷预测方法 .该方法首先采用4层BP神经网络构建多层感知模型,并结合模糊控制原理实现任意复杂非线性关系逼近.然后通过灰狼优化算法克服BP神经网络的局部搜索陷入,从而解决其参数设置依赖性问题.实验结果表明,相比于PSO-BP算法和SA-BP算法,该算法的仿真拟合效果最优,表现出了更高的软件缺陷预测准确度. Aiming at the accuracy problem in software defect testing task,a software defect prediction method based on optimized BP neural network is proposed.First,the 4 level BP neural network is used to build the multilayer perception model,and the fuzzy control theory is applied to achieve any complex nonlinear relation approximation.Then the Grey Wolf optimization algorithm is used to overcome the local search trapped in BP neural network,so as to solve the problem of parameter setting dependency.The experimental results show that compared with the PSO-BP algorithm and the SA-BP algorithm,the simulation results of the proposed algorithm are optimal,showing a higher accuracy of software defect prediction.
作者 曾毅 张福泉 ZENG Yi;ZHANG Fu- quan(Xingjian College of Science and Liberal Arts,Guangxi University,Nanning 530005;School of Software,Beijing Institute of Technology,Beijing 100081 China)
出处 《湘潭大学自然科学学报》 CAS 2018年第2期100-103,共4页 Natural Science Journal of Xiangtan University
基金 福建省科技厅省引导性项目(2018H0028) 文化部国家科技支撑计划项目(2012BAH38F00)
关键词 软件测试 缺陷预测 准确度 BP神经网络 灰狼算法 软件可靠性 software testing defect prediction accuracy BP neural network Grey Wolf algorithm software reliability
  • 相关文献

参考文献6

二级参考文献43

  • 1王林章,李宣东,郑国梁.模型驱动的软件测试研究[J].计算机科学,2005,32(10):230-235. 被引量:6
  • 2刘旸.基于机器学习的软件缺陷预测研究[J].计算机工程与应用,2006,42(28):49-53. 被引量:5
  • 3邓雄,常创业,吴际,金茂忠,刘超.模型驱动的EJB构件测试建模研究[J].电子学报,2006,34(B12):2467-2472. 被引量:2
  • 4Schach S R,邓迎春,韩松,徐天顺译.软件工程-面向对象和传统的方法[M].北京:机械工业出版社,2007.
  • 5王梓坤.随机过程论[M].北京:科学出版社,1978..
  • 6HANJia-wei KAMBERM.数据挖掘概念与技术[M].北京:机械工业出版社,2001.1 51-161.
  • 7Fenton N E,Pfleeger S L.软件度量[M].杨海燕等译.北京:机械工业出版社,2004.
  • 8Challagulla V U B,Bastani F B,Yen I L,et al.Empirical assessment of machine learning based software defect pre- diction techniques[C]//Proceedings of the 10th IEEE Interna- tional Workshop on Object-Oriented Real Time Dependable Systems, Washington, DC, USA, 2005 : 263-270.
  • 9Feton N E, Martain N, William M, et al.Predicting software defects in varying development lifecycles using Bayesian nets[J].Information and Software Technology,2007,49( 1):32-43.
  • 10Fast M, Assadi M, De S.Development and multi-utility of an ANN model for an industrial gas turbine[J].Applied Energy, 2009,86(1) :9-17.

共引文献87

同被引文献34

引证文献5

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部