期刊文献+

基于多特征与卷积神经网络的人脸表情识别 被引量:7

Facial Expression Recognition Based on Multiple Features and Convolutional Neural Networks
下载PDF
导出
摘要 提出一种多特征与卷积神经网络相结合的人脸表情识别方法。先对人脸表情图像进行预处理,根据人脸面部"三庭五眼"的特征和人脸的几何模型对图像进行裁剪,采用双三次插值法对图像进行缩放。然后提取样本的局部方向模式、二维离散小波变换、Sobel算子三种特征。将这三种特征以三通道图像的形式输入卷积神经网络中进行自适应融合,融合后的特征通过Softmax层进行分类。在CK+数据库的识别率为99.51%,在RAF-DB的识别率为72.1%,识别率都有所提升,验证了所提方法的有效性。 A novel facial expression recognition method based on multiple feature extraction and convolution neural network is proposed. In the preprocessing phase,expression images are cropped by using "three court five eyes"and the geometric model of the face,scaled by using bicubic interpolation. Three different features are extracted: local direction patterns,discrete wavelet transform and sobel operator. These three feature images are input into the convolution neural network in the form of three channel images for adaptive fusion. And the features are classified by the Softmax layer. The recognition rate of this method in CK + is 99. 5% and in RAF-DB is 72. 1%,the recognition rate of the two databases is improved. The results show the effectiveness of the method proposed.
作者 于明 安梦涛 刘依 YU Ming;AN Meng-tao;LIU Yi(School of Computer Science and Engineering, Hebei University of Technology, Tianjin 300401, China)
出处 《科学技术与工程》 北大核心 2018年第13期104-110,共7页 Science Technology and Engineering
基金 天津市科技计划项目(14RCGFGX00846 15ZCZDNC00130) 河北省自然科学基金(F2015202239)资助
关键词 人脸表情识别 卷积神经网络 多特征提取 特征融合 facial expression recognition convolutional neural networks multiple feature extraction feature fusion
  • 相关文献

参考文献4

二级参考文献43

  • 1边肇祺.模式识别[M].北京:清华大学出版社,1998..
  • 2PANTIC M, ROTHKRANTZ L. Automatic analysis of facial expressions : The state of the art [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010,22 ( 12 ) : 1424 - 1445.
  • 3FASEL B, LUETYIN J. Automatic facial expression analysis : A survey [ J ]. Pattern Recognition, 2003, 36 ( 1 ) : 259 - 275.
  • 4COOTES T F, EDWARDS G J, TAYLOR C J. Active ap- pearance models [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2001,23 (6) :681 - 685.
  • 5GU Wenfei, XIANG Cheng, VENKATESH Y V, et al. Facial expression recognition using radial encoding of local Gabor features and classifier synthesis [ J ]. Pattern Recog- nition,2012,45 ( 1 ) :80 - 91.
  • 6SHAN C, GONG S, MCOWAN P W. Facial expression recognition based on local binary patterns: A comprehensive study [ J ]. Image and Vision Computing, 2009,27 ( 6 ) : 803 -816.
  • 7WANG X, JIN C, LIU W, et al. Feature fusion of hog and wld for facial expression recognition [ C ] // IEEE/SICE In- ternational Symposium on System Integration (SII). 2013 : 227 - 232.
  • 8BENGIO Y, COURVILLE A, VINCENT P. Representation leaming:A review and new perspectives [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013,35(8) :1798 - 1828.
  • 9ROWEIS S T, SAUL L K. Nonlinear dimensionality reduction by locally linear embedding [ J ]. Science, 2000,290 : 2323 - 2326.
  • 10BELKIN M, NIYOGI P. Laplacian eigenmaps for dimensionality reduction and data representation [ J ]. Neural Computation,2003,15 (6) : 1373 - 1396.

共引文献80

同被引文献46

引证文献7

二级引证文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部