期刊文献+

基于信道状态信息参考信号的三维多用户多输入多输出有限反馈预编码算法

Three-dimensional Multi-user Multi-input Multiple Output Finite Feedback Precoding Algorithm Based on Channel State Information Reference Signal
下载PDF
导出
摘要 利用三维多输入多输出(3D MIMO)信道矩阵的克罗内克积结构,传输预编码可分成水平与垂直维预编码,有效挖掘空间自由度可以提高系统性能。针对现有算法未能更好利用空间自由度及单流传输的不足,提出了一种基于信道状态信息参考信号(CSI-RS)的多用户MIMO(MU-MIMO)有限反馈预编码算法。该算法采用新码本,依据最大信干噪比准则选取最优的预编码矩阵索引(PMI)返回给基站(BS)供调度。验证结果显示该算法较已有算法,实现了多流传输,拥有更优的和速率(SR)及误码率(BER)。 Using the Cronecker product structure of tliree-dimensional multi-input multiple output (3D MIMO) channel matrix,the transmission precoding can be divided into horizontal and vertical dimension,and the effective mining of spatial degrees of freedom can improve system performance. A multi-streaming MIMO multi-user MIMO (MU-MIMO ) finite feedback coding algorithm based on channel state information reference signal (CSI-RS) is proposed to solve the shortcomings of existing algoritlims which can not make beter use of spatial degrees of freedom and can only perform single-stream transmission. The algorithm uses the new codebook to select the optimal precoding matrix index (PMI) according to the maximum signal to noise ratio criterion to return to the base station(BS)for scheduling. The verification results show that compared with existing algorithms,the proposed algorithm achieved multi-stream transmission and had better sum rate (SR) and bit error rate (BER).
作者 王华华 周远文 黄龙 WANG Hua-liua;ZHOU Yuan-wen;HUANG Long(Chongqing Key Lab of Mobile Communications,Chongqing kniversity of Posts and Telecommunications,Chongqing 400065 , Chin)
出处 《科学技术与工程》 北大核心 2018年第12期115-119,共5页 Science Technology and Engineering
基金 国家科技重大专项(2017ZX03001021-004) 重庆市基础与前沿研究计划(cstc2016jcyjA 0209) 重庆市重点产业共性关键技术创新专项(cstc2017zdcy-zdzx0030)资助
关键词 3D MIM0 CSI-RS 多用户 多流传输 预编码 3D MIMO CSI-RS multi-user multi-stream transmission precoding
  • 相关文献

参考文献3

二级参考文献36

  • 1Bachoc C. Linear programming bounds for codes in Grassmannian spaces. IEEE Trans. on Information Theory, 2006, 52(5): 2111-2125.
  • 2Love D J, Heath R W, and Strohmer T. Grassmannian beamforming for multiple-input multiple-output wireless systems. IEEE Trans. on Information Theory, 2003, 49(10): 2735-2747.
  • 3Chiurtu N and Rimoldi B. Varying the antenna locations to optimize the capacity of multi-antenna Ganssian channels. ICASSP, Istanbul, June 2000, Vol. 5: 3121-3123.
  • 4Jorswieck E A and Sezgin A. Impact of spatial correlation on the performance of orthogonal space-time block codes. Communications Letters, 2004, 8(1): 21-23.
  • 5Diggavi S N. On achievable performance of spatial diversity fading channels. IEEE Trans. on Information Theory, 2001, 47(1): 308-325.
  • 6Tarasak P, Minn H, and Bhargava V K. Linear prediction receiver for differential space-time block codes with spatial correlation. Communications Letters, 2003, 7(11): 543-545.
  • 7Bolckei H, Gesbert D, and Paulraj A J. On the capacity of OFDM-based spatial multiplexing systems Communications. IEEE Trans. on Communications, 2002, 50(2): 225-234.
  • 8Haustein T, von Helmolt C, and Jorswieck E, et al.. Performance of MIMO systems with channel inversion. IEEE 55th VTC, Vancouver, 2002, Vol. 1: 35-39.
  • 9Quentin Q H, Spencer, Peel C B, and Swindlehurst A L, et al.. An introduction to the multi-user MIMO downlink. IEEE Communications Magazine, 2004, 42(10): 60-67.
  • 10Costa M. Writing on dirty paper. IEEE Trans. on Information Theory, 1983, 29(3): 439-441.

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部