摘要
电动汽车(EV)在配网中的渗透率不断增加,影响到电网的经济性和稳定性。提出了适用于主动配电网(ADN)多目标重构的二进制量子粒子群算法(BQPSO),建立了有功网损、电压偏移指标(VSI)和开关操作次数的多目标优化数学模型,以确定接入分布式电源(DG)和电动汽车(EV)后系统的最佳重构方案,并在修改后的IEEE33节点配电系统中进行计算,通过与不同的算法进行对比,验证了文中方法的实用性和有效性。
The increasing of penetration rate of electric vehicle ( EV ) will affect the economy and stability of the dis-tribution network. A binary quantum particle swarm optimization algorithm (BQPSO ) which is suitable for multi- objective reconstruction of active distribution network ( ADN ) is put forward in this paper. The active network loss, volt -age deviation index (VSI) and the number of switching operation are set up as the multi-objective optimization mathe-matical model to determine the best reconstruction scheme with distributed generation ( DG ) and electric vehicles (EY ) , and it is calculated in the modified IEEE33 node distribution system. The method of this paper was compared with different algorithms to verify the practicality and effectiveness of the proposed method.
作者
张涛
张东方
王凌云
Zhang Tao;Zhang Dongfang;Wang Lingyun(################)
出处
《电测与仪表》
北大核心
2018年第9期42-47,共6页
Electrical Measurement & Instrumentation
基金
国家自然科学基金资助项目(51407104)
关键词
分布式电源
电动汽车
二进制量子粒子群
主动配电网重构
多目标优化
distributed generation,electric vehicle,binary quantum particle swam optimization, active distributh
network reconfiguration, multi-objective optimization