期刊文献+

基于神经网络集成模型的宫颈细胞病理计算机辅助诊断方法 被引量:9

Computer-aided diagnosis of cervical cytopathology based on neural network ensemble model
下载PDF
导出
摘要 针对宫颈细胞病理图像自动筛查问题,本文提出一种基于人工智能技术的计算机辅助诊断方法。该方法通过对宫颈细胞病理图像采用自适应双阈值法进行初步检测,再采用改进Chan-Vase模型进行精确分割,提取出细胞(粘连簇团)中的不同区域。然后,结合病理诊断专家规则,构建相应的正交特征集。在此基础上,使用神经网络集成模型进行正常、疑似病变二分类识别,完成计算机辅助诊断。实验表明,本文方法能够有效完成宫颈病理细胞(粘连簇团)的分类识别,具有较高的正确率(84%)与较低的误判率(2.1%)。满足了在保证判断正确率的条件下,尽量降低将疑似病变样本误判为正常样本的实际病理诊断要求。 Aiming to the automatic screening of cervical cytopathological images,an artificial intelligence based automatic diagnosis-assisted method was proposed.First of all,adaptive dual threshold method was used to detect the cervical cytopathological images initially.Secondly,improved Chan-Vase model was used to precisely extract different areas of adhesive cell cluster.After that,the related feature set was built according to the diagnostic rules of pathological experts.At last,neural network ensemble was applied to normal or suspected lesions two-classification recognition.The result of the experiment showed that cervical cell lesions could be effectively distinguished according to classification with this method,which had high accuracy (84%) and low rate of misjudgment (2.1%),meeting the practical requirement of pathological diagnosis,which is reducing the miscalculating of the suspected lesions to normal ones,meanwhile assuring the diagnostic accuracy.
作者 廖欣 郑欣 邹娟 冯敏 孙亮 杨帆 LIAO Xin;ZHENG Xin;ZOU Juan;FENG Min;SUN Liang;YANG Fan(Department of Pathology,West China Second University Hospital,Chengdu 610041,China;Key Laboratory of Birth Defects and Related Disease of Women and Children,Ministry of Education,Sichuan University,Chengdu 610041,China;College of Computer Science and Engineering,University of Electronic Science and Technology of China,Chengdu 611731,China)
出处 《液晶与显示》 CAS CSCD 北大核心 2018年第4期347-356,共10页 Chinese Journal of Liquid Crystals and Displays
基金 四川省重点实验室开放基金(No.2017LF3008) 广东省应用型研发重大专项基金(No.2015BD10131002)~~
关键词 宫颈 细胞病理 筛查 神经网络集成 计算机辅助诊断 cervix cytopathology screening test neural network ensemble computer-aided diagnosis
  • 相关文献

参考文献11

二级参考文献109

  • 1李培华,张田文.主动轮廓线模型(蛇模型)综述[J].软件学报,2000,11(6):751-757. 被引量:125
  • 2李基业,蒋彦水.应用图像分析技术对乳腺肿瘤细胞核面积的定量分析[J].中华物理医学杂志,1993,15(3):167-170. 被引量:4
  • 3何苗,全宇,李建华,付志民,周宝森.MLP神经网络在子宫颈细胞图像识别中的应用[J].中国卫生统计,2006,23(4):293-296. 被引量:6
  • 4何苗,蒋本铁,李建华,付志民,范玉,周宝森.径向基人工神经网络在宫颈细胞图像识别中的应用[J].中国医科大学学报,2006,35(1):79-81. 被引量:9
  • 5Bir Bhanu, John Ming, Sungkee Lee. Closed-loop adaptive image segmentation [ A ]. IEEE. Computer Society Conference on Computer Vision and Pattern Recognition [ C ].IEEE Press, 1991:734 - 735.
  • 6Bir Bhanu, Jing Peng. Adaptive integrated image segmentation and object recognition [ J ]. IEEE. Transaction on Systems, MAN and Cybernetics-Part C: Applications and Reviews. 2000, 30(4) :427 - 441.
  • 7M D Levine, A M Nazif. Dynamic measurement of computer generated image segmentations [ J]. IEEE. Transactions on Pattern Analysis and Machine Intelligence (PAMI), 1985,7 ( 2 ) : 155 - 164.
  • 8M Sezgin, B San kur. Survey over image thresholding techniques and quantitative performance evaluation [ J]. Journal of Electronic Imaging, 2004,13 (1) : 146 - 165.
  • 9F Hachouf. A generic methodology for image segmentation evaluation [ A]. IEEE Conference on Information and Communication Technologies [ C]. IEEE Press,2006. 1794- 1799.
  • 10P K Sahoo, S Soltani, A K C Wong, Y C Chen. A survey of thresholding techniques [ J ]. Computer Vision, Graphics and Image Processing, 1988,41(2):233 - 260.

共引文献241

同被引文献55

引证文献9

二级引证文献60

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部