期刊文献+

基于多分块三重损失计算的行人识别方法

Method based on the multi-block triplet loss calculation of person re-identification
下载PDF
导出
摘要 提出一种基于多分块三重损失计算的行人识别方法,来解决行人识别准确率不高的问题。与其他方法相比,本文设计了一种多分块三重损失计算的方式来对提取的特征进行反馈计算。具体来说,首先,三个行人图像输入到分割层当中,各自分为上中下三块,并在对应的网络当中进行特征提取;其次,在经过两层卷积层提取行人特征之后,每一个行人的上中下三块都有对应的三重损失计算,并根据损失值进行反馈调节;最后,将所有的行人图像进行融合,并继续在网络当中训练,通过分类器进行分类输出,在测试当中根据输出值判别行人对是否属于同一个行人。实验表明,文章提出的方法在公开库数据库当中与其他传统方法相比显著提高了行人识别准确率。 In this paper,a new method based on multi-block triple-loss calculation of person re-identification is proposed to solve the problem of low pedestrian recognition accuracy.Multi-block triple loss calculation is utilized to carry out feedback calculation of the extracted features.Firstly,three pedestrian images are taken as the input of the slice layer and divided into upper,middle and lower blocks,respectively.The features are extracted in the corresponding networks.Secondly,the upper,middle and lower parts of each pedestrian use the corresponding triple loss calculation,and feedback is adjusted according to the loss value after extracting the pedestrian features from the two convolution layers.Finally,all the pedestrian images are fused and trained in the network.The output is classified and the pedestrian pairs are judged to the same pedestrian according to the output values.Experiments show that the method proposed provides higher recognition accuracy than other traditional methods in the open databases.
作者 宋宗涛 陈岳林 蔡晓东 曾燕 SONG Zongtao;CHEN Yuelin;CAI Xiaodong;ZENG Yan(School of Mechanical and Electrical Engineering, Guilin University of Electronic Technology, Guilin 541004, China;School of Information and Communication, Guilin University of Electronic Technology, Guilin 541004, China)
出处 《电视技术》 北大核心 2017年第11期203-206,224,共5页 Video Engineering
基金 广西科技计划项目(广西重点研发计划)(桂科AB16380264) 国家科技支撑计划项目(2014BAK11B02) 物联网技术与产业化推进协同创新中心创新创业及人才培养项目-智慧安防及农业(WLW200601)
关键词 多分块 三重损失 深度网络 行人识别 multi-block triple-loss deep network person re-identification
  • 相关文献

参考文献1

二级参考文献18

  • 1DALAL N and TRIGGS B. Histograms of oriented gradients for human detection[C]. Proceedings of IEEE Computer Society Conference on in Computer Vision and Pattern Recognition. San Diego, 2005: 886-893. doi: 10.1109/CVPR. 2005.177.
  • 2ARMANFARD N, KOMEILI M, and KABIR E. TED: a texture-edge descriptor for pedestrian detection in video sequences[J]. Pattern Recognition, 2012, 45(3): 983-992. doi: 10.1016/j.patcog.2011.08.010.
  • 3YAN Zhiguo, YANG Fang, WANG Jian, et al. Face orientation detection in video stream based on Harr-like feature and LQV classifier for civil video surveillance[C]. IET International Conference on Smart and Sustainable City (ICSSC), Shanghai, 2013: 161-165. doi: 10.1049/cp.2013. 2029.
  • 4XIAO Pan, CAI Nian, TANG Bochao, et al. Efficient SIFT descriptor via color quantization[C]. IEEE International Conference on Consumer Electronics, Shenzhen, 2014: 1-3. doi: 10.1109/ICCE-China.2014.7029876.
  • 5YANG Jian, XU Wei, LIU Yu, et al. Real-time discrimination of frontal face using integral channel features andAdaboost[C]. IEEE Conference on Software Engineering and Service Science (ICSESS), Beijing, 2014: 360-363. doi: 10. 1109/ICSESS.2014.6933582.
  • 6BORRAJO M L, ROMERO R, and IGLESIAS E L. A linear-RBF multikernel SVM to classify big text corpora[OL]. http://dx.doi.org/10.1155/2015/878291, 2015.
  • 7WU Shuqiong and NAGAHASHI H. Parameterized AdaBoost: introducing a parameter to speed up the training of real AdaBoost[J]. IEEE Signal Processing Letters, 2014, 21(6): 687-691. doi: 10.1109/LSP.2014.2313570.
  • 8SCHMIDHUBER J. Deep learning in neural networks: an overview[J]. Neural Networks, 2015, 61: 85-117. doi: 10.1016/ j.neunet.2014.09.003.
  • 9RANZATO M, BOUREAU Y, and LECUN Y. Sparse feature learning for deep belief networks[C]. Proceedings of Annual Conference on Neural Information Processing Systems (NIPS), Vancouver, 2007: 1185-1192.
  • 10LAW M T, THOME N, and CORD M. Bag-of-Words Image Representation: Key Ideas and Further Insight[M]. Switzerland, Springer International Publishing, 2014: 29-52.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部