期刊文献+

改进的K-奇异值分解图像去噪算法 被引量:7

Improved K-SVD Image Denoising Algorithm
下载PDF
导出
摘要 针对传统的K-奇异值分解信号利用率不足,采用了稀疏贝叶斯学习预处理图像信号;将正交匹配追踪与改进之后的最速下降理论相结合;因噪声原子存在于字典更新之后得到的字典中,所以结合Bartlett检验法将噪声原子裁剪掉。实验结果表明,此方法相对于小波阈值去噪法、基于离散余弦变换字典稀疏表示等去噪方法能够更好地滤除噪声,保留图像边缘信息,获得更高的峰值信噪比,得到图像视觉效果更佳。 Aiming at the problem of shortage of signal utilization by traditional K-SVD. Using sparse Bayesian learning to preprocess the image signal. Combining the orthogonal matching pursuit algorithm with the improved steepest descent algorithm. Taking into account the noise atoms are present in the dictionary after the update of the dictionary, so combined with the Bartlett test method to cut off the noise atoms. Experimental results show that the method is better than the wavelet threshold denoising algorithm and the sparse representation based on DCT dictionary. Also, the method can remove the noise better, preserve image edge information, obtain higher peak signal to noise ratio, and the resulting image has a better visual effect.
作者 程一峰 刘增力 CHENG Yi-feng, LIU Zeng-li(Facuhy of Information Engineering and Automation, Kunming University of Science and Technology Kunming, Yunnan 650500, Chin)
出处 《计量学报》 CSCD 北大核心 2018年第3期332-336,共5页 Acta Metrologica Sinica
基金 国家自然科学基金(61271007 60872157)
关键词 计量学 图像去噪 稀疏贝叶斯学习 正交匹配追踪 K-奇异值分解 K-均值聚类 metrology image denoising sparse Bayesian learning orthogonal matching pursuit K-SVD K-meansclustering
  • 相关文献

参考文献3

二级参考文献30

共引文献25

同被引文献61

引证文献7

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部