期刊文献+

基于多特征提取和SVM参数优化的车型识别 被引量:19

Vehicle Recognition Based on Multi-feature Extraction and SVM Parameter Optimization
下载PDF
导出
摘要 提出了一种基于多特征提取和支持向量机(support vector machines,SVM)参数优化的车型识别方法,此方法解决了采用单一特征容易受到光照、天气、阴影等环境影响的问题,并且可以对运动中的车辆进行车型识别。首先,采集车辆样本并进行图像预处理,提取车辆的几何特征、纹理特征和方向梯度直方图(histogram of oriented gradient,HOG)特征;其次,将提取的多种特征量进行组合测试,并与单个特征量的测试结果进行比较;最后,采用粒子群算法优化SVM的参数并使用优化的SVM参数进行运动车辆的车型识别。实验结果表明:提出的多特征提取和SVM参数优化相结合的车型识别方法能够取得很好的识别效果,识别率达到90%以上。 A kind of vehicle recognition method which was based on multi-feature extraction and support vector machines (SVM) parameter optimization is proposeal. Many kinds of problems that used the single-feature can be influenced by those factors such as light, weather and shadow, etc. Those problems could be solved by our method. In addition, our method can identify the moving vehicle model. At first, the samples of vehicle are collected and begin the process of image preprocessing, a variety of features will be extracted, including geometric features, texture features and histogram of gradient features. The second, combining and testing the various features, then the results with the results of single-feature testing are compared. At last, preparing for the recognition of the vehicle by SVM which was optimized by Particle Swarm Optimization(PSO). The experimental results show that the method which is put forward can achieve a good recognition results. The recognition rate can reach more than 90%.
作者 程淑红 高许 周斌 CHENG Shu-hong1,2, GAO Xu1 , ZHOU Bin1(1. College of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China; 2. Postdoctoral Workstation of CITIC Dicastal Co. , Ltd, Qinhuangdao, Hebei 066004, Chin)
出处 《计量学报》 CSCD 北大核心 2018年第3期348-352,共5页 Acta Metrologica Sinica
基金 国家自然科学基金(61601400) 河北省博士后择优资助项目(B2016003027) 秦皇岛市科学技术研究与发展计划(201701B009)
关键词 计量学 车型识别 图像处理 多特征提取 支持向量机 参数优化 metrology vehicle recongnition image-processing multi-feature extraction support vector machines parameter optimization
  • 相关文献

参考文献5

二级参考文献50

  • 1王素琴,林碧英.基于GPS/GSM/GIS的智能公交车辆监控系统的研究[J].四川大学学报(自然科学版),2005,42(4):710-713. 被引量:9
  • 2肖汉光,蔡从中,廖克俊.利用声波和地震波识别军事车辆类型[J].系统工程理论与实践,2006,26(4):108-113. 被引量:7
  • 3杨建文,贾民平.希尔伯特-黄谱的端点效应分析及处理方法研究[J].振动工程学报,2006,19(2):283-288. 被引量:41
  • 4汪国昭.Bezier曲线曲面的离散求交方法.浙江大学学报计算几何专集[M].,1984.108-119.
  • 5何旭.经验模式分解的研究及其在故障诊断中的应用[D].上海交通大学,2004.
  • 6Chadil Noppadol, Russameesawang Apirak, Keeratiwintakorn Phongsak. Real-time tracking management system using GPS, GPRS and google earth[C] //ECTI-CON 2008, United States, 2008.
  • 7Jing Gang, Guo Yin-jing, Lu Wen-hong, et al. Design of an intelligent transportation system based on GPS and GPRS[C]//ICWMMN 2006, United Kingdom, 2006.
  • 8i Qing, Tatuya Jinmei, Shima Keiichi. IPv6详解,第1卷,核心协议实现(英文影印版)[M].北京:人民邮电出版社,2009.
  • 9Blum Jeremy J, Eskandarian Azim, Hoffman Lance J. Challenges of intervehicle Ad Hoc networks[J]. IEEE Transactions on Intelligent Transportation Systems,2004, 5(4) :347-351.
  • 10Ramin Hekmat. Ad-hoc Networks: Fundamental Properties and Network Topologies [M]. Netherlands : Springer, 2006.

共引文献24

同被引文献143

引证文献19

二级引证文献155

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部