期刊文献+

Exploring Latent Semantic Information for Textual Emotion Recognition in Blog Articles 被引量:3

Exploring Latent Semantic Information for Textual Emotion Recognition in Blog Articles
下载PDF
导出
摘要 Understanding people's emotions through natural language is a challenging task for intelligent systems based on Internet of Things(Io T). The major difficulty is caused by the lack of basic knowledge in emotion expressions with respect to a variety of real world contexts. In this paper, we propose a Bayesian inference method to explore the latent semantic dimensions as contextual information in natural language and to learn the knowledge of emotion expressions based on these semantic dimensions. Our method synchronously infers the latent semantic dimensions as topics in words and predicts the emotion labels in both word-level and document-level texts. The Bayesian inference results enable us to visualize the connection between words and emotions with respect to different semantic dimensions. And by further incorporating a corpus-level hierarchy in the document emotion distribution assumption, we could balance the document emotion recognition results and achieve even better word and document emotion predictions. Our experiment of the wordlevel and the document-level emotion predictions, based on a well-developed Chinese emotion corpus Ren-CECps, renders both higher accuracy and better robustness in the word-level and the document-level emotion predictions compared to the state-of-theart emotion prediction algorithms. Understanding people's emotions through natural language is a challenging task for intelligent systems based on Internet of Things(Io T). The major difficulty is caused by the lack of basic knowledge in emotion expressions with respect to a variety of real world contexts. In this paper, we propose a Bayesian inference method to explore the latent semantic dimensions as contextual information in natural language and to learn the knowledge of emotion expressions based on these semantic dimensions. Our method synchronously infers the latent semantic dimensions as topics in words and predicts the emotion labels in both word-level and document-level texts. The Bayesian inference results enable us to visualize the connection between words and emotions with respect to different semantic dimensions. And by further incorporating a corpus-level hierarchy in the document emotion distribution assumption, we could balance the document emotion recognition results and achieve even better word and document emotion predictions. Our experiment of the wordlevel and the document-level emotion predictions, based on a well-developed Chinese emotion corpus Ren-CECps, renders both higher accuracy and better robustness in the word-level and the document-level emotion predictions compared to the state-of-theart emotion prediction algorithms.
出处 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2018年第1期204-216,共13页 自动化学报(英文版)
基金 supported in part by the National Natural Science Foundation of China(NSFC)Key Program(61573094) Fundamental Research Funds for the Central Universities(N140402001)
关键词 Bayesian inference emotion-topic model emotion recognition multi-label classification natural language understanding Bayesian inference emotion-topic model emotion recognition multi-label classification natural language understanding
  • 相关文献

参考文献1

二级参考文献8

共引文献8

同被引文献14

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部