期刊文献+

基于压缩感知与SURF特征的手语关键帧提取算法 被引量:10

Key Frame Extraction Algorithm of Sign Language Based on Compressed Sensing and SURF Features
原文传递
导出
摘要 针对实时、大词汇集、连续的手语视频高效准确地识别,提出了一种基于压缩感知与加速稳健特征(SURF)的手语关键帧提取算法。利用压缩感知将手语视频降维成低维多尺度帧图像特征,通过自适应阈值完成子镜头分割,以处理大量的手语帧数据;运用SURF特征点完成特征匹配,绘制其间的相似度曲线进而提取关键帧。在前期预处理阶段,采用基于HSV空间自适应颜色检测提取手势区域。实验验证,由本文算法提取到的关键帧具有较高的准确性,且算法具备处理大量复杂数据的能力。 A key frame extraction algorithm of sign language based on compressed sensing and speed up robust features(SURF) feature is proposed to recognize the real-time, large vocabulary sets and continuous sign language videos efficiently and accurately. The sign language videos are reduced to the image features of low dimensional and multi-scale frame with compressed sensing. The segmentation of sub lens is completed by a adaptive threshold value, and a large number of sign language frame data are processed. We use SURF feature points to complete the feature matching, and the SURF frame similarity curve is drawn for extracting the key frames. In the pre- processing stage, we use the HSV space adaptive co,or detection to abstract the sign language area. Experimental results show that the key frames extracted by the proposed algorithm have high accuracy, and the proposed algorithm has the ability to process large amounts of complex data.
作者 王民 李泽洋 王纯 石新源 Wang Min;Li Zeyang;Wang Chun;Shi Xinyuan(School of Information and Control Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China)
出处 《激光与光电子学进展》 CSCD 北大核心 2018年第5期184-191,共8页 Laser & Optoelectronics Progress
基金 住房和城乡建设部科学技术项目计划(2016-R2-045) 陕西省自然科学基础研究资金(2014JM8343) 陕西省自然科学基金青年基金(2013JQ8003)
关键词 图像处理 图像特征提取 压缩感知 加速稳健特征 关键帧 手势检测 image processing image feature extraction compression sensing speed up robust features key frame sign language detection
  • 相关文献

参考文献12

二级参考文献114

  • 1沈军行,孙守迁,潘云鹤.从运动捕获数据中提取关键帧[J].计算机辅助设计与图形学学报,2004,16(5):719-723. 被引量:44
  • 2余棉水,黎绍发.基于边缘与SVM的车牌自动定位与提取[J].计算机应用研究,2004,21(10):131-133. 被引量:8
  • 3阳书平,林行刚.Key Frame Extraction Using Unsupervised Clustering Based on a Statistical Model[J].Tsinghua Science and Technology,2005,10(2):169-173. 被引量:5
  • 4魏维,游静,刘凤玉,许满武.语义视频检索综述[J].计算机科学,2006,33(2):1-7. 被引量:18
  • 5Malima A, Ozgur E, Cetin M. A fast algorithm for vision-based hand gesture recognition for robot control[C]//14th IEEE Sig- nal Processing and Communications Applications Conference. Piscataway, NJ, USA: IEEE, 2006: 1-4.
  • 6Sfmchez-Nielsen E, Ant6n-Canals L, Hemandez-Tejera M. Hand gesture recognition for human-machine interaction [J]. Journal of WSCG, 2004, 12(1): 91-96.
  • 7Wu Y, Liu Q, Huang T S. An adaptive self-organizing color seg- mentation algorithm with application to robust real-time human hand localization[C]//Proceedings of the 9th Asian Conference on Computer Vision. 2000:1106-1111.
  • 8Zhu Y X, Xu G Y, Kriegman D J. A real-time approach to the spotting, representation, and recognition of hand gestures for human-computer interaction[J]. Computer Vision and Image Understanding, 2002, 85(3): 189-208.
  • 9Weng C B, Li Y, Zhang M M, et al. Robust hand posture recog- nition integrating multi-cue hand tracking[M]//Lecture Notes in Computer Science, vol.6249. Berlin, Germany: Springer- Verlag, 2010: 497-508.
  • 10Heap T, Samaria F. Real-time hand tracking and gesture recog- nition using smart snakes[C]//Proceedings of the Conference on Interface to Real and Virtual Worlds. 1995.

共引文献147

同被引文献83

引证文献10

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部