期刊文献+

基于线性超混沌评估机制的云网络大数据稳定评测算法 被引量:2

Large data stability evaluation algorithm based on linear hyperchaos evaluation mechanism
下载PDF
导出
摘要 针对当前云网络中大数据稳定评测算法存在数据冗余度高、传输颗粒度不明显、传输性能较差等难题,提出了一种基于线性超混沌评估机制的云网络大数据稳定评测算法。首先,基于传输成本具有的维度特性进行稳定建模,设计了多维资源片的方式进行传输质量评测;其次,将数据传输中的质量维度,如传输带宽、包冗余度等纳入传输评测口径,且采取拉普拉斯质量评测算法对传输过程中的维度耗费进行特征指数建模,实现了云网络中大数据传输中的稳定评测,且评估效率较高。仿真实验表明,线性超混沌评估机制能够有效改善大数据传输中的拥塞现象,网络传输性能稳定。所提算法可以准确、稳定地评测云网络运行质量,且成本代价较低,实现过程较为便捷。 In order to solve the problem that large data stability evaluation algorithm in the current cloud network, such as high data redundancy, time-domain partition and poor transmission performance, this paper proposes a large data stability evaluation algorithm based on linear hyperchaos evaluation mechanism. First of all,for the stability characteristics of the transmission cost with dimensional modeling based on transmission quality evaluation through the transmission process of large size of data block; secondly, the quality dimension in data transmission, such as transmission bandwidth, packet redundancy and quality evaluation of caliber, take the Laplasse algorithm for feature index modeling of transmission process the dimensions of cost, to achieve a stable evaluation of large data transmission in the cloud network with high efficiency evaluation. The simulation results show that the mechanism can effectively improve congestion in large data transmission, network transmission performance is stable, and the noise immunity is superior.
作者 王艳 Wang Yan(Chuzhou Branch, Anhui Open University, Chuzhou 239000, Chin)
出处 《湖南文理学院学报(自然科学版)》 CAS 2018年第2期44-48,共5页 Journal of Hunan University of Arts and Science(Science and Technology)
关键词 云网络 数据评估 质量维度 联合评估 拉普拉斯质量评测 cloud network data assessment quality dimension joint assessment Laplasse quality evaluation
  • 相关文献

参考文献9

二级参考文献147

  • 1肖健梅,黄有方,李军军,王锡淮.基于离散微粒群优化的物流配送车辆路径问题[J].系统工程,2005,23(4):97-100. 被引量:25
  • 2陈子侠,叶庆泰.基于城市配送的单车线路算法研究[J].计算机工程,2005,31(11):32-34. 被引量:8
  • 3Olariu S, Stojmenovic I. Design guidelines for maximizing life- time and avoiding energy holes in sensor networks with uniform distribution and uniform reporting I-C] ff Proceedings of 25th IEEE International Conference on Computer Communications (INFOCOM 2006). New York: IEEE Communications Society, 2006 .. 1-12.
  • 4Lian J, Naik K, Agnew G. Data capacity improvement of wireless sensor networks using non-uniform sensor distributionEJ. Jour- nal of Distributed Sensor Networks, 2006,2(2) : 121-145.
  • 5Heinzelman W B, Chandrakasan A P, Balakrishnan H. An appli- cation-specific protocol architecture for wireless micro sensor networks[-J. IEEE Transactions on Wireless Communications, 2002,1(4) .. 660-670.
  • 6Jea D, Somasundara A, Srivastava M. Multiple controlled mobile elements(data mules) for data collection in sensor networks[C]// Proceedings of the First IEEE international conference on Dis- tributed Computing in Sensor Systems. Heidelberg Springer- Verlag Berlin, 2005 : 244-257.
  • 7Gao S, Niu Y C, Huo H W, et al. An energy efficient communi cation protocol based on data equilibrium in mobile wireless sen- sor network[-C-]//Proceedings of the 3rd international confe- rence on Mobile ad-hoe and sensor networks. Heidelberg Sprin- ger-Verlag Berlin, 2007 : 433-444.
  • 8Younis O, Fahmy S. HEED.. A hybrid, energy-efficient, distribu- ted clustering approach for ad-hoc sensor networks[-J]. IEEE Transaction on Mobile Computing, 2004,1 (3) : 366-379.
  • 9Youssef M A,Younis M F,Aisha K A. A Constrained shortest- Path Energy-Aware Routing Algorithm for Wireless Sensor Networks[C]ffProeeedings of 2002 IEEE Wireless Communica- tions and Networking Conference. 2002(2) ..794-799.
  • 10Bi Y Z, Niu J W, Sun L M, et al. Moving schemes for mobile sinks in wireless sensor networks[-C///Proceedings of the 26th IEEE International Performance Computing and Communica- tions Conference(IPCCC2007). Louisiana: IEEE Computer Socie- ty,2007:101-108.

共引文献40

同被引文献13

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部