摘要
国内外大部分气田现场通常运用Turner模型与Li Min模型进行携液能力预测,但这2个模型的适用范围具有较大的限制性,均是基于直井和气相层流条件下的推导,没有考虑曳力系数和井斜角对携液能力的影响,将曳力系数视为常数,而紊流条件下雷诺数的不同对曳力系数的取值有较大影响,从而使模型的计算结果误差较大。针对这一问题,首先对定向井中的液滴进行了受力分析,然后对紊流条件下雷诺数与曳力系数的关系进行了非线性拟合,得出了基于气相紊流条件下定向井连续携液临界流量的预测新模型。现场实例计算分析表明:(1)新模型的计算结果相对误差小于10%,相比于常用的计算模型,精度提高了10.416%~66.125%;(2)计算结果与现场实际数据吻合度更高,可以准确预测紊流条件下气井连续携液临界流量。新模型对于提高现场气井的合理配产和最终采收率具有一定的指导作用。
Current popular models for calculating continuous liquid-carrying critical flow rate are established based on vertical wells and laminar flow without considering the influences of deviation angle and Reynolds number on liquid-carrying.With the increasing turbulent fluid in more and more directional wells,the current popular models cannot accurately predict the continuous liquid-carrying critical flow rate of these wells.In order to solve the problem,we firstly conducted the force analysis of the liquid drop in directional wells and then established a mathematic model between Reynolds number and drag coefficient in the turbulent fluid obtained by nonlinear regression.At last,we rebuilt a new model to predict continuous liquid-carrying critical flow rate for directional gas wells in turbulent fluid and gave the correction coefficient table.The practical calculation analysis indicates that the calculation error of this new model is less than 10%,with the accuracy 10.416%-66.125% higher than those of current popular models.This shows that the continuous liquid-carrying critical flow rate of directional gas wells in turbulent fluid can be predicted accurately by using this new model,which can be used to enhance gas recovery.
作者
明瑞卿
贺会群
胡强法
Ming Ruiqing;He Huiqun;Hu Qiangfa(Research Institute of Petroleum Exploration& Development, PetroChina, Beijing 100083, China;Engineering Technology R&D Company Limited, CNPC, Beijing 102206, China)
出处
《地质科技情报》
CSCD
北大核心
2018年第3期248-252,共5页
Geological Science and Technology Information
基金
国家科技重大专项"深层连续管作业技术与装备"(2016ZX05023-006)
中国石油集团工程技术研究院有限公司科研项目"连续管作业综合软件开发"(2015F-2001-01)
关键词
临界携液流量
非线性拟合
定向气井
液滴模型
紊流
continuous liquid-carrying critical flow rate
nonlinear fitting
directional gas well
droplet model
turbulence flow