期刊文献+

基于核正交流形角不相似度的非线性动态过程监测方法

Kernel orthogonal manifold angle based dissimilarity for nonlinear dynamic process monitoring
原文传递
导出
摘要 针对过程的非线性和动态特性,提出一种基于核正交流形角不相似度的监测方法.利用两个流形子空间正交向量求取内积矩阵的奇异值,构建基于核正交流形角的不相似度指标,量化评估标准集和测试集的流形子空间的统计量关系.首先,在多流形投影方法的基础上,利用非线性函数将原始过程数据投影到特征空间;其次,引入Gram-Schmidt方法正交化投影向量,形成流形子空间的基向量;再次,对两个流形子空间的内积进行特征值分解,获得核正交流形角,构建不相似度监测模型,该监测指标融合角度和距离度量,能够更好地触发故障警报;最后,通过在TE过程上的仿真实验验证了所提出算法的优越性. For process with nonlinear and dynamic features, a kernel orthogonal manifold angle based dissimilarity is developed to quantitatively evaluate the statistical relationship between the manifold subspaces of normal benchmark and test data sets. The kernel orthogonal manifold angle based dissimilarity index is derived from the singular values of the inner-product matrix calculated by the orthogonal vectors in the two manifold subspaces. Firstly, the historical process data is mapped into feature space by using the nonlinear function based on multi-manifold. Then, the projection vectors are orthogonalized by using Gram-Schmidt method, and base vectors of the manifold subspace are constructed.Furthermore, the kernel orthogonal manifold angle with singular value decomposition(SVD) of the inner-product of two manifold subspaces, and the dissimilarity monitoring model are got. Angle and distance measures are combined into the monitoring index to trigger fault alarm with better sensitivity. The simulation experiment on the TE process demonstrates the superiority of the proposed method.
作者 卢春红 文万志 LU Chun-hong;WEN Wan-zhi(College of Computer Science and Technology, Nantong University, Nantong 226019, China)
出处 《控制与决策》 EI CSCD 北大核心 2018年第6期1141-1146,共6页 Control and Decision
基金 国家自然科学基金项目(61602267) 南通市科技应用项目(MS12016036) 江苏省高校自然科学基金项目(17KJB530008)
关键词 非线性动态过程监测 核正交流形投影 正交向量 不相似度指标 故障检测 nonlinear dynamic process monitoring kernel orthogonal manifold projection orthogonal vector dissimilarity index fault detection
  • 相关文献

参考文献2

二级参考文献20

  • 1肖应旺,徐保国.改进PCA在发酵过程监测与故障诊断中的应用[J].控制与决策,2005,20(5):571-574. 被引量:17
  • 2周东华,李钢,李元.数据驱动的工业过程故障诊断与预测技术-基于PCA与PLS的方法[M].北京:科学出版社,2011.
  • 3Hwang I, Kim S, Kim Y, et al. A survey of fault detection, isolation, and reconfiguration methods[J]. IEEE Trans on Control Systems Technology, 2010, 18(3): 636-653.
  • 4Shao J D, Rong G. Nonlinear process monitoring based on maximum variance unfolding projections[J]. Expert Systems with Applications, 2009, 36(8): 11332-11340.
  • 5Hu K, Yuan J. Batch process monitoring with tensor factorization[J]. J of Process Control, 2009, 19(2): 288- 296.
  • 6He X F, Yah S C. Face recognition using laplacianfaces[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2005, 27(3): 328-340.
  • 7Deng C, He X F. Locally consistent concept factorization for document clustering[J]. IEEE Trans on Knowledge and Data Engineering, 2011, 23(6): 902-913.
  • 8Cho J H, Lee J M, Choi S W, et al. Fault identification for processes monitoring using kernel principal component analysis[J]. Chemical Engineering Science, 2005, 60(1): 279-288.
  • 9Chiang L H, Russell E L, Braatz R D. Fault detection and diagnosis in industrial systems[M]. London: Springer-Verlag, 2001: 6-13.
  • 10Ge Z, Song Z, Gao F. Review of recent research on data-based process monitoring[J]. Industrial&Engineering Chemistry Research, 2013, 52(10): 3543-3562.

共引文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部