摘要
通过分析光纤可调谐光纤Fabry-Perot(F-P)滤波器的温度特性,解释了变温环境下FBG解调稳定性下降的原因。进而提出了一种基于F-P标准具和HCN气室复合多波长参考的FBG解调方法。此方法将变温下FBG解调误差分解为F-P标准具波长参考误差和线性拟合误差。首先根据多光束干涉理论和HCN气室吸收峰波长不随温度变化的特性,求得F-P标准具各波长参考误差和各HCN吸收峰波长线性拟合误差;然后通过多项式拟合算法准确得到各FBG线性拟合误差;最后补偿FBG波长参考误差和线性拟合误差得到绝对波长解调值。实验结果表明,20℃~60℃变温环境下,与HCN气室单峰校正相比,复合多波长参考FBG解调误差从±56.8pm降低到±11.7pm,标准差从24.0pm降低到4.6pm,有效提高了变温环境下FBG的解调稳定性。
This paper analyzes the temperature characteristics of tunable fiber Fabry-Perot (F-P) filter, and explains why the demodulation accuracy of fiber Bragg grating (FBG) is reduced in unsteady tem- perature environment. In this case, we propose an FBG stablization method based on F-P etalon and HCN composite multi-wavelength reference. The method decomposes FBG demodulation errors into F-P etalon wavelength reference error and linear fitting error. First of all, according to the theory of multi- beam interference and the fact that the absorption peak wavelengths of HCN gas cell do not change with temperature, the linear error of the reference wavelength of the etalon and the position of the HCN ab- sorption peak are obtained. Then we get the linear fitting error of each FBG by polynomial fitting algo- rithm. Finally the FBG absolute wavelength demodulation value is obtained by compensating the wave- length reference error and the linear fitting error. The experimental results show that compared with HCN gas cell single wavelength correction, the FBG demodulation error of composite multi-wavelength reference is reduced from ±56.8 pm to ±11.7 pm,and the standard deviation is reduced from 24.0 pm to 4. 6 pm in 20 ℃ ~60 ℃ temperature changing environment, which effectively improves the demodula- tion stability of FBG.
作者
江俊峰
臧传军
王双
张学智
刘琨
杨依宁
谢仁伟
樊晓军
刘铁根
JIANG Jun-feng;ZANG Chuan-jun;WANG Shuang;ZHANG Xue-zhi;LIU Kun;YANG Yi-ning;Xie Ren-wei;Fan Xiao-jun;LIU Tie-gen(Key Laboratory of Opto-Electronics Information Technology ,Institute of Optical Fiber Sensing of Tianjin Univer- sity, School of Precision Instrument & Opto- Electronics Engineering, Tianjin University, Tianjin 300072, Chin)
出处
《光电子.激光》
EI
CAS
CSCD
北大核心
2018年第6期575-581,共7页
Journal of Optoelectronics·Laser
基金
国家重大科学仪器设备开发专项(2013YQ030915)、国家“973”计划(20LOCB327802)、国家自然科学基金(61227011、61378043、61475114和61505139)、教育部科学技术研究重大项目(313038)、天津市自然科学基金(13JCYBJC16200)、深圳市科技创新委员会(JCYJ20120831153904083)和中国空间技术研究院CAST创新基金资助项目