期刊文献+

Combustion performance of nozzles with multiple gas orifices in large ladles for temperature uniformity 被引量:1

Combustion performance of nozzles with multiple gas orifices in large ladles for temperature uniformity
原文传递
导出
摘要 In order to improve the baking temperature uniformity of the large ladle in steelmaking plants, the flame combustion characteristics of nozzles with different inner structures were numerically simulated with the finite volume method code Fluent. The flow field and premixed combustion reaction inside and outside the nozzle with multiple gas orifices were exhibited. Meanwhile, the influences of the gas injecting angle and the number of gas orifices on temperature, velocity, and pressure fields were studied. The results show that the flame length and width at the rear of flame temperature field reach the maximum values in the nozzle with the gas injecting angle of 20° and 4 gas orifices for the control of premixed combustion inside the nozzle, which could provide better temperature uniformity in ladles. The length of the 1273 K isothermal surface is 4.89 m, and the cross-section area at 4 m away from the outlet of the nozzle is 0.13 m2. The pressure losses of different types of nozzles range from 112.2 to 169.4 Pa and decrease with the decrement in gas injecting angle and the number of gas orifices. The ladle bottom preheating temperature is increased by 320-360 K for the optimized nozzle. The inner surface temperature differences between wall and bottom of the ladle are less than 10%. There is good baking temperature uniformity after the application of optimum structurally designed nozzles. In order to improve the baking temperature uniformity of the large ladle in steelmaking plants, the flame combustion characteristics of nozzles with different inner structures were numerically simulated with the finite volume method code Fluent. The flow field and premixed combustion reaction inside and outside the nozzle with multiple gas orifices were exhibited. Meanwhile, the influences of the gas injecting angle and the number of gas orifices on temperature, velocity, and pressure fields were studied. The results show that the flame length and width at the rear of flame temperature field reach the maximum values in the nozzle with the gas injecting angle of 20° and 4 gas orifices for the control of premixed combustion inside the nozzle, which could provide better temperature uniformity in ladles. The length of the 1273 K isothermal surface is 4.89 m, and the cross-section area at 4 m away from the outlet of the nozzle is 0.13 m2. The pressure losses of different types of nozzles range from 112.2 to 169.4 Pa and decrease with the decrement in gas injecting angle and the number of gas orifices. The ladle bottom preheating temperature is increased by 320-360 K for the optimized nozzle. The inner surface temperature differences between wall and bottom of the ladle are less than 10%. There is good baking temperature uniformity after the application of optimum structurally designed nozzles.
出处 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2018年第4期387-397,共11页
关键词 LADLE NOZZLE PREHEATING Flame Combustion performance Gas orifice Temperature uniformity Ladle Nozzle Preheating Flame Combustion performance Gas orifice Temperature uniformity
  • 相关文献

同被引文献18

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部