期刊文献+

肺癌放射组学研究进展 被引量:8

Progress on research of radiomics in lung cancer
原文传递
导出
摘要 目的传统影像学在肺癌早期诊断、病情评估、疗效评价方面处于主导地位,但具有主观性和半定量等缺点。新兴放射组学能够挖掘大量客观且量化的影像特征,并建立肺癌诊断预测模型、基因表型模型和疗效评价模型等一系列临床应用模型,有望成为肺癌精准医疗的重要方法。本文总结放射组学在肺癌各个方面研究进展。方法应用PubMed、万方及CNKI数据库检索系统,以"肺癌,放射组学"或者"肺癌,影像组学"为关键词,检索2003-11-01-2017-05-30的相关文献。纳入标准:(1)放射组学在肺癌诊断中的研究进展;(2)放射组学在肺癌分期及转移方面的研究进展;(3)放射组学在肺癌疗效评价中的研究进展;(4)放射组学对肺癌基因表型的预测。根据标准共纳入分析40篇文献。结果放射组学作为一种新兴的研究方法,最初主要用于评估肺癌放疗效果,然后逐步在肺癌的鉴别诊断、分期、转移评估、疗效判断及基因突变预测等方面展开探索,而且取得了一定的成果。大量研究证实,联合放射组学特征评估肺癌患者可达到更精准的预测效果,促进实现精准医疗及个体化医疗。结论放射组学在肺癌中具有良好的研究前景和临床应用价值。 OBJECTIVE Traditional imaging has been dominant in the early diagnosis, disease evaluation and prog- nosis assessment of lung cancer, but it is subjective and semi-quantitative. However, the emerging radiomics can mine a large number of objective and quantitative imaging features, and establish a series of clinical application models of lung cancer, such as diagnostic model,gene phenotype model and prognosis evaluation model. Radiomics is expected to become an important means of precision medicine of lung cancer. The aim of this article is to summarize the research progress of radiomics in all aspects of lung cancer. METHODS Papers published between November 2003 and May 2017 were searched,with the key words of "lung cancer,radiomics" in PubMed,Wan Fang and CNKI databases. The inclusion crite- ria:research progress of radiomics in the diagnosis of lung cancer; research progress of radiomics in staging and metastasis of lung cancer; research progress of radiornics in prognosis assessment of lung cancer; prediction of gene phenotype of lung cancer by radiomics. A total of 40 articles were included and analyzed according to the criteria. RESULTS As a new re- search method,radiomics study initially mainly used to evaluate prognosis of radiotherapy,and then gradually extended to differential diagnosis, staging, metastasis assessment, prognosis evaluation, genetic mutation prediction and so on for lung cancer. Radiomics study of lung cancer has achieved some success. Numerous studies confirmed that combined radiomic features to evaluate lung cancer patients can achieve more accurate prediction performance, and promote the realization of precision medicine and personalized medicine. CONCLUSION Radiomics has good research prospects and clinical applica tion value in lung cancer.
作者 涂文婷 范丽 刘士远 TU Wen-ting;FAN Li;LIU Shi-yuan(Department of Radiology ,Changzheng Hospital ,Second Military Medical University ,Shanghai 200003 ,P. R. Chin)
出处 《中华肿瘤防治杂志》 CAS 北大核心 2018年第8期604-608,共5页 Chinese Journal of Cancer Prevention and Treatment
基金 国家重点研发计划政府间合作项目(2016YFE0103000) 国家自然科学基金重点项目(81230030) 国家自然科学基金面上项目(81370035) 上海生物医药重大专项(13411950100) 上海市浦江人才计划(15PJD002)
关键词 肺肿瘤 放射组学 影像组学 精准医学 特征提取 lung neoplasms radiomics precision medicine feature extraction
  • 相关文献

参考文献6

二级参考文献66

  • 1王耀南,王绍源,毛建旭.基于分形维数的图像纹理分析[J].湖南大学学报(自然科学版),2006,33(5):67-72. 被引量:13
  • 2Aerts HJ, Velazquez ER, Leijenaar RT, et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach[J]. Nat Commun, 2014, 5:4006.
  • 3Egelmeer AG,Velazquez ER,de Jong JM, et al. Development and validation of a nomogram for prediction of survival and local control in laryngeal carcinoma patients treated with radiotherapy alone: a cohort study based on 994 patients [J]. Radiother Oncol, 2011, 100 ( 1 ) :108-115.
  • 4Valentini V, Lambin P, Myerson RJ. Is it time for tailored treatment of rectal cancer? From prescribing by consensus to prescribing by numbers[ J]. Radiother Oncol, 2012, 102 ( 1 ) : 1- 3.
  • 5Jaffe CC. Measures of response: RECIST, WHO, and new alternatives [ J ]. J Clin Oncol, 2006, 24 (20) : 3245-3251.
  • 6Burton A. REGIST: right time to renovate? [ J]. Eur J Cancer, 2007, 43(11) :1642.
  • 7Lambin P, Rios-Velazquez E, Leijenaar R, et al. Radiomics: extracting more information from medical images using advanced feature analysis[J]. Eur J Cancer, 2012, 48(4) :441-446.
  • 8Burrell RA, McGranahan N, Bartek J, et al. The causes and consequences of genetic heterogeneity in cancer evolution [ J ]. Nature, 2013, 501 (7467) :338-345.
  • 9Gatenby RA, Grove O, Gillies RJ. Quantitative imaging in cancer evolution and ecology [ J ]. Radiology,2013, 269 ( 1 ) : 8-15.
  • 10Tebbit CL, Zhai J, Untch BR, et al. Novel tumor sampling strategies to enable microarray gene expression signatures in breast cancer:a study to determine feasibility and reproducibility in the context of clinical care [ J ]. Breast Cancer Res Treat, 2009,118 (3) :635-643.

共引文献176

同被引文献52

引证文献8

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部