期刊文献+

X波段柔性编码超表面设计与RCS缩减研究 被引量:5

Design and Study of X Band Flexible Coding Metasurface for RCS Reduction
原文传递
导出
摘要 设计了一种柔性非定向低散射2 bit编码超表面。将4种具有不同反射相位的基本单元随机排列构成整个相位梯度超表面,其对入射电磁波形成无规则散射,实现RCS缩减特性。实验结果表明:在频点8.40 GHz处,编码超表面的垂直入射反射率为-13.5 dB,偏离法线-30°~30°范围RCS平均缩减为10.0 dB。进一步的研究结果表明,编码超表面弯曲在直径为7 cm的圆柱面上,RCS平均缩减可达7.8 dB。该超表面可实现曲面的RCS有效缩减。该柔性编码超表面在天线、电磁隐身等领域具有潜在的应用价值。 In this paper, we propose a non-directional lowing scattering and flexible 2 bit coding metasurface. The four basic units with different reflection phase constituted the whole phase gradient surface by random arrangement; this coding metasurface can achieve reduction of RCS by the diffuse reflection of incident electromagnetic wave. The experimental results show that the reflectivity is -13.5 dB for coding metasurface can be achieved at 8.40 GHz, and the RCS reduction as compared with a bare metallic plate with the same size is average 10.0 dB when deviating -30° -30° from the normal incidence. The further studied results indicate that the characteristic of RCS reduction can be kept up as the coding metasurface is wrapped around a cylinder with a diameter of 7 cm, and the RCS reduction is average 7.8 dB. This flexible coding metasurface is expected to have potential application value in the field of antenna and stealth.
作者 杨家稷 程用志 裴小军 聂彦 龚荣洲 YANG Jia-ji;CHENG Yong-zhi;PEI Xiao-jun;NIE Yan;GONG Rong-zhou(School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China;School of Information Science and Engineering, Wuhan University of Science and Technology, Wuhan 430081, China)
出处 《微波学报》 CSCD 北大核心 2018年第3期26-30,36,共6页 Journal of Microwaves
基金 国家自然科学基金联合基金项目(U1435209,61605147) 湖北省科技厅自然科学基金项目(2017CFB588)
关键词 编码超表面 非定向散射 RCS缩减 coding metasurface non-direction scattering RCS reduction
  • 相关文献

参考文献7

二级参考文献48

  • 1Cai W and Shalaev V 2010 Optical Metamaterials: Fundamentals and Applications (LLC: Springer Sci- ence+Business Media).
  • 2Pendry J P, Holde A J, Robbins D J and Stewart W J 1999 IEEE Trans. Microwave Theory Tech. 47 2075.
  • 3Smith D R, Padilla W J, Vier D C, Nemat-Nasser S C and Schultz S 2000 Phys. Rev. Lett. 84 4184.
  • 4Qureshi F, Antoniades M A and Eleftheriades G V 2005 IEEE Antennas Wirel. Propag. Lett. 4 333.
  • 5Alici K B and Ozbay E 2007 Y. Appl. Phys. 101 083104.
  • 6Fang N, Lee H, Sun C and Zhang X 2005 Science 308 534.
  • 7Aydin K, Bulu I and Ozbay E 2007 Appl. Phys. Lett. 90 254102.
  • 8Bilotti F, Alu A, Engheta N and Vegni L 2005 Proceedings of the 2005 Nanoscience and Nanotechnology Symposium- NN, 2005, Frascati, Italy, pp. 14-16.
  • 9Mosallaei H and Sarabandi K 2005 Proceedings of 2005 IEEE Antennas and Propagation Society International Symposium, Vol. 1B, pp. 615-618, 39.
  • 10Landy N I, Sajuyigbe S, Mock J J, Smith D R and Padilla W J 2008 Phys. Rev. Lett. 100 207402.

共引文献273

同被引文献22

引证文献5

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部