期刊文献+

基于深度学习的无线电特征提取

Radio feature extraction based on deep learning
下载PDF
导出
摘要 文章针对现实环境下无线电通信环境复杂,通信方式复杂多变,且人工提取无线电特征工作量巨大又存在不稳定因素,提出基于神经网络学习的无线电特征提取方法。用深度卷积神经网络代替传统的特征提取算法对无线电时域信号进行编码学习;然后通过深度学习特征矢量的相似度,实现同类调制信号相同特征的自动匹配;最后,利用训练数据的类别标签信息自上而下对无线电特征进行微调,得到无线电深度学习表示向量以此训练全连接分类器实现无线电调制分类。实验结果表明,本方法能够有效克服传统线性分类方法的缺点,有效地提升无线电调制方式分类性能。 This paper proposes a radio feature extraction method based on neural network learning in view of the fact that the radio communication environment is complicated and the communication method is complex and changeable. Using deep convolutional neural network instead of traditional feature extraction algorithm to encode the radio time domain signal coding learning. Then through the similarity of deep learning feature vector, to achieve the same feature of the same kind of modulation signal automatic matching. Finally, the use of training data class label information the radio characteristics are fine-tuned from top to bottom, and radio deep learning representation vectors are obtained to train the fully-connected classifier for radio modulation classification. Experimental results show that this method can effectively overcome the shortcomings of traditional linear classification methods and effectively improve the classification performance of radio modulation methods.
作者 何学智 林林 黄自力 解金豹 He Xuezhi;Lin Lin;Huang Zili;Xie Jinbao(Fujian Newland Computer Co., Ltd., Fuzhou 350015, China;Hefei University of Technology, Hefei 230009, China)
出处 《无线互联科技》 2018年第11期20-24,共5页 Wireless Internet Technology
基金 装备预研基金 项目名称:基于深度学习的无线电信号特征提取技术研究 项目编号:6140137050207 福建省区域科技发展项目 项目名称:基于深度学习的嵌入式视觉感知技术研究和应用 项目编号:2018H4004 中央引导地方科技发展专项 项目名称:工业物联网感知识别技术创新平台 项目编号:2017L3016
关键词 无线电 特征提取 深度学习 非线性映射 卷积神经网络 radio feature extraction deep learning nonlinear mapping convolutional neural network
  • 相关文献

参考文献3

二级参考文献33

  • 1赵知劲,郑仕链,尚俊娜.认知无线电技术[M].北京:科学出版社,2008.
  • 2Peng Chunyi, Zheng Haitao, Zhao B Y. Utilization and Fairness in Spectrum Assignment for Opportunistic Spectrum Access[J]. ACM Mobile Networks and Applications, 2006, 11 (4): 555-576.
  • 3Rahimi-Vahed A, Mirzaei A H. Solving a Bi-criteria Permutation Flow-shop Problem Using Shuffled Frog-leaping Algorithm[J]. Soft Computing, 2008, 12(5): 435-452.
  • 4Eusuff M, Lansey K, Pasha E Shuffled Frog-leaping Algorithm: A Memetic Meta-heuristic for Discrete Optimization[J]. Engineering Optimization, 2006, 38(2): 129-154.
  • 5赵知劲,郑仕链,尚俊娜,孔宪正.基于量子遗传算法的认知无线电决策引擎研究[J].物理学报,2007,56(11):6760-6766. 被引量:34
  • 6LIM T Y,RATNAM M M,KHALID M A.Automatic classification of weld defects using simulated data and an MLP neural network[J].Insight,2007,49 (3):154-159.
  • 7VILAR R,ZAPATA J,RUIZ R.An automatic system of classification of weld defects in radiographic images[J].NDT and E International,2009,42(5):467-476.
  • 8ZAPATA J,VILAR R,RUIZ R.An adaptive-networkbased fuzzy inference system for classification of welding defects[J].NDT & E International,2010,43 (3):191-199.
  • 9ZAPATA J,VILAR R,RUIZ R.Performance evaluation of an automatic inspection system of weld defects in radiographic images based on neuroclassifiers[J].Expert Systems with Applications,2011,38 (7):8812-8824.
  • 10MIRAPEIX J,GARCíA-ALLENDE P B,COBO A,et al.Real-time arc-welding defect detection and classification with principal component analysis and artificial neural networks[J].NDT & E International,2007,40 (4):315-323.

共引文献107

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部