期刊文献+

最大化信干噪比的双基地MIMO雷达波形设计 被引量:2

Bistatic MIMO Radar Waveform Design for SINR Maximization
下载PDF
导出
摘要 为提高双基地MIMO雷达在信号相关干扰条件下对区域目标的探测能力,同时兼顾降低接收端回波信号处理的难度,以雷达输出信干噪比(signal-to-interference-plus-noise ratio,SINR)最大化为准则,提出了一种信号相关干扰条件下的双基地MIMO雷达发射波形设计方法。首先,基于基波束思想将发射波形的设计转换为对发射加权矩阵的设计,然后采用循环优化方法对发射加权矩阵和接收机权值进行联合优化,通过广义Rayleigh商、半正定松弛技术及Charnes-Cooper变换求解问题,并利用高斯随机生成法得到最优发射加权矩阵向量解,最终通过矩阵化操作得到最优发射加权矩阵。实验仿真验证了所提方法的有效性。 To improve the detection capability of the bistatic multiple input multiple output( MIMO)radar and reduce the difficulty of receiving the echo signal processing,an algorithm for bistatic MIMO radar waveform design in presence of signal-dependent interference is proposed,which is based on maximizing signal-to-interference plus noise ratio( SINR). The waveform design problem is transformed into the problem of transmitting weighting matrix design basing basic beam,then the problem can be solved by generalized Rayleigh quotient,semi-definite relaxation technique and Charnes-Cooper transform,and the Gaussian randomization method is adopted to get the optimal transmitting weighting matrix vector. The optimal transmitting weighting matrix is obtained by the matrixing operation. The efficiency of the proposed algorithm is verified by the simulation results.
作者 吴磊 李小波 周青松 李磊 WU Lei;LI Xiao-bo;ZHOU Qing-song;LI Lei(National University of Defense Technology, School of Electronic Countermeasure, Anhui Hefei 230037, Chin)
出处 《现代防御技术》 2018年第3期159-164,共6页 Modern Defence Technology
关键词 双基地MIMO雷达 发射加权矩阵 波形设计 信干噪比 凸优化 半正定松弛 bistatic multiple-input multiple-output (MIMO) radar transmit weighting matrix wave-form design signal-to-interference-plus-noise ratio (SINR) convex optimization semi-definite relaxation(SDR)
  • 相关文献

参考文献4

二级参考文献54

  • 1保铮,张庆文.一种新型的米波雷达──综合脉冲与孔径雷达[J].现代雷达,1995,17(1):1-13. 被引量:57
  • 2Fishler E, Haimovich A, and Blum R, et al.. Performance of MIMO radar systems: Advantages of angular diversity[C]. Proc.38th Asilomar Conf. Signals, Syst. Comput., Pacific Grove, CA, Nov. 2004, 1: 305-309.
  • 3Bliss D W and Forsythe K W. Multiple-input multiple- output (MIMO) radar and imaging: Degrees of freedom and resolution[C]. Proc.37th Asilomar Conf. Signals, Syst. Comput., Pacific Grove, CA, Nov. 2003, 1: 54-59.
  • 4Forsythe K, Bliss D, and Fawcett G. Multiple-input multiple-output (MIMO) radar: Performance issues[C]. Proc. 38th Asilomar Conf. Signals, Syst. Comput., Pacific Grove, CA, Nov. 2004, 1: 310-315.
  • 5Li J, Stoica P, and Xu L Z, et al.. On parameter identifiability of MIMO radar[J]. IEEE Signal Processing Letters, 2007, 14(12): 968-971.
  • 6Fuhrmann D R and San Antonio G S. Transmit beamforming for MIMO radar systems using signal cross-correlation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2008, 44(1): 171-186.
  • 7Aittomaki T and Koivunen V. Low-complexity method for transmit beamforming in MIMO radars[C]. Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, Honolulu, HI, Apr. 2007, 2: 305-308.
  • 8Stoica P, Li J, and Xie Y. On probing signal design for MIMO radar[J]. IEEE Transactions on Signal Processing, 2007, 55(8): 4151-4161.
  • 9Stoica P, Li J, and Zhu X. Waveform synthesis for diversity-based transmit beampattern design[J]. IEEE Transactions on Signal Processing, 2008, 56(6): 2593-2598.
  • 10Grant M and Boyd S. CVX: Matlab software for disciplined convex programming, http://stanford.edu/-boyd/cvx, 2008, Dec.

共引文献118

同被引文献18

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部