期刊文献+

面向心电信号的低功耗压缩感知电路设计 被引量:1

Design of low power consumption compressed sensing circuit for ECG signals
下载PDF
导出
摘要 基于压缩感知理论,设计了一种用于心电信号的低功耗压缩感知电路。利用心电信号的周期性,通过预先计算压缩处理过程中产生的最大数据,确定了压缩电路中累加器的位数,避免了使用多余的寄存器,有效降低了电路的功耗并提高了数据的压缩比。使用贝叶斯学习算法进行重构验证。结果表明:压缩感知电路的逻辑门数由42 071减少到了25 029,功耗由11.247μW降低到了6.847μW,较优化前减少了39.12%;重构信号的均方根误差百分比达到了1.14%。 A low power consumption compressed sensing circuit for electrocardiogram( ECG) signals is designed based on compressed sensing( CS) theory. Making use of the periodicity of ECG signals,the bits of accumulator is determined by precalculating and compressed processing the maximum value of data in advance,avoid using redundant registers in the circuit,thus the power consumption is reduced effectively and data compression ratio is improved. Reconstruction verification is carried out by using the Bayesian learning algorithm. Verification results show that the logic gate number of CS circuit decreases from 42 071 gates to 25 029 ones and the power consumption is lowered from 11. 247 μW to 6. 847 μW,achieving a power reduction of 39. 12 %. The percentage of root-mean-squared error of reconstructed signals reaches 1. 14 %.
作者 黄翔 潘天文 魏朋博 孙益洲 虞致国 顾晓峰 HUANG Xiang;PAN Tian-wen;WEI Peng-bo;SUN Yi-zhou;YU Zhi-guo;GU Xiao-feng(Engineering Research Center of IoT Technology Applications , Ministry of Education, Department of Electronic Engineering, Jiangnan University, Wuxi 214122, China)
出处 《传感器与微系统》 CSCD 2018年第6期79-82,共4页 Transducer and Microsystem Technologies
基金 江苏省六大人才高峰资助项目(2013-DZXX-027) 中央高校基本科研业务费专项资金资助项目(JUSRP51510 JUSRP51323B) 江苏省研究生科研与实践创新计划项目(SJLX16_0500 KYLX16_0776 SJCX17-0510)
关键词 压缩感知 无线体域网 心电信号 低功耗 贝叶斯学习算法 compressed sensing(CS) wireless body area networks electrocardiogram(ECG) signal low powerconsumption Bayesian learning algorithm
  • 相关文献

参考文献6

二级参考文献46

  • 1颜良,陈儒军,刘石,陈一平.基于UAF42通用滤波芯片的50Hz陷波器设计[J].仪器仪表学报,2006,27(8):924-927. 被引量:23
  • 2Anna M R Dixon, Emily G Allstot, Daibashish Gango- padhyay, et al. Compressed sensing system considerations for ECG and EMG wireless hiosensors [J]. IEEE Transactions on Biomedical Circuits and Systems, 2012, 6 (2): 156-166.
  • 3Hossein Mamagbanian, Nadia Khaled, David Atienza, et al. Compressed sensing for real-time energy-efficient ECG com- pression on wireless body sensor nodes [J]. IEEE Trans on Biomedical Eng, 2011, 58 (9): 2456-2466.
  • 4Lexa M A, Davies M E, Thompson J S. Reconciling compres- sive sampling systems for spectrally sparse continuous-time sig- nals [J]. IEEE Trans Signal Process, 2012, 60 (1): 155-171.
  • 5Yan J. Designs of orthogonal filter banks and orthogonal co- sine-modulated filter banks [D ]. Victoria, BC, Canada: Dept of Electrical and Computer Engineering, University of Victoria, 2010: 9-47.
  • 6Thong T Do, Lu Gan, Nam H Nguyen, et al. Fast and efficient compressive sensing using structurally random matrices [J]. IEEETransaction on Signal Processing, 2012, 60 (1): 139-154.
  • 7Figueiredo M A T, Nowak R D, Wright S J. Gradient projec- tion for sparse reconstruction: Application to compressed sen- sing and other inverse problems [J]. IEEE J Selec Topics Signal Prcc, 2007, 1 (4): 586-597.
  • 8Chen F, Chandrakasan A P, Stojanovicr V. Design and analy- sis of a hardware-efficient compressed sensing architecture for data compression in wireless sensors [J]. IEEE J Solid-State Circuits, 2012, 47 (3): 744-756.
  • 9Needell D, Tropp J A. CoSaMP: Iterative signal recover from incomplete and inaccurate samples [J]. Applied and Computa- tional Harmonic Analysis, 2009, 26 (3): 301-321.
  • 10DONOHO D L.Compressed Sensing[J].IEEE Transactions on Information Theory,2006,52(4):1 289-1 306.

共引文献970

同被引文献8

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部