期刊文献+

一种基于STM32的机载惯性稳定云台的设计 被引量:4

Design of airborne inertial stabilization cloud platform based on STM32
下载PDF
导出
摘要 为了使多旋翼无人飞行器在飞行过程中获取的机载视频图像清晰且稳定,设计一种基于STM32和自适应互补滤波算法的机载惯性稳定云台。该云台利用自适应互补滤波对俯仰、滚转和偏航三个通道上的姿态信息进行融合,实时驱动直流无刷电机进行机载云台的姿态调整,保持机载云台在惯性空间中的稳定性。实验结果表明,视轴稳定精度达到0.26 mrad,满足多旋翼无人飞行器的应用需求。 An airborne inertial stabilization cloud platform based on STM32 and the adaptive complementary filtering algorithm is designed to make the airborne video images obtained by the multi-rotor unmanned aircraft during its flight clear and stable. On this cloud platform,the attitude information from three channels of pitching,rolling and yaw is fused by means of adaptive complementary filtering to drive the DC brushless motor in real time for attitude adjustment of the airborne cloud platform and keep the stability of the airborne cloud platform in inertial space. The experimental results show that the visual axis ′s stabilization precision is 0.26 mrad,which can meet the application requirements of the multi-rotor unmanned aircraft.
作者 王日俊 曾志强 党长营 段能全 杜文华 王俊元 WANG Rijun;ZENG Zhiqiang;DANG Changying;DUAN Nengquan;DU Wenhua;WANG Junyuan(School of Mechanical Engineering, North University of China, Taiyuan 030051, China)
出处 《现代电子技术》 北大核心 2018年第12期145-148,152,共5页 Modern Electronics Technique
基金 中北大学自然科学基金资助项目(XJJ2016006)~~
关键词 多旋翼无人飞行器 STM32 自适应互补滤波 机载云台 MEMS传感器 视轴稳定 multi-rotor unmanned aircraft STM32 adaptive complementary filtering airborne cloud platform MEMS sensor visual axis stabilization
  • 相关文献

参考文献5

二级参考文献45

  • 1Wu Y L,Wang T M,Liang J H,et al.Attitude Estimation for SmallHelicopter Using Extended Kalman Filter[C]椅Proceedings of the2008 IEEE Conference on Robotics,Automation and Mechatronics.Piscataway:IEEE Press,2008:577-581.
  • 2Tarhan M,Altug E.EKF Based Attitude Estimation and Stabilizationof a Quadrotor UAV Using Vanishing Points in Catadioptric Images[J].Journal of Intelligent and Robotic Systems,2011,62(3-4):587-607.
  • 3Marina H G,Espinosa F,Santos C.Adaptive UAV Attitude EstimationEmploying Unscented Kalman Filter, FOAM and Low-Cost MEMSSensors[J].Sensors,2012,12(7):9566-9585.
  • 4Won S P, Melek W W, Golnaraghi F.A Kalman/ Particle FilterBased Position and Orientation Estimation Method Using a PositionSensor/ Inertial Measurement Unit Hybrid System [J].IEEETransactions on Industrial Electronics,2010,57(5):1787-1798.
  • 5Euston M,Coote P,Mahony R,et al.A Complementary Filter forAttitude Estimation of a Fixed-Wing UAV[C]椅Proceedings of the2008 IEEE/ RSJ International Conference on Robots and System.Piscataway:IEEE Press,2008:340-345.
  • 6Sebastian O H,Madgwick,Andrew J L,et al.Estimation of IMUand MARG Orientation Using a Gradient Descent Algorithm[C]椅IEEE International Conference on Rehabilitation Robotics,2011.
  • 7MEI Y, ZHAO H Y, GUO S Y. The analysis of Image Stabilization technology based on small UAV airborne video [C]∥Proceedings of IEEE International Conference on Computer Science and Electronics Engineering. Hangzhou: IEEE, 2012: 586-589.
  • 8UMENO T, KANEKO T, HORI Y. Robust servo system design with two degrees of freedom and its application to novel motion control of robot manipulators [J]. IEEE Transactions on Industrial Electronics, 1993, 40(5):473-485.
  • 9KHALIL H K. Nonlinear system [M]. 3rd ed. New Jersey: Prentice Hall, 2002: 24.
  • 10HU Hong jie, YUE Jin yu, ZHANG Ping. A control scheme based on RBF neural network for high precision servo system [C]∥Proceedings of IEEE International Conference on Mechatronics and Automation. Xi′an: IEEE, 2010.

共引文献33

同被引文献42

引证文献4

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部