期刊文献+

桥式吊车系统的自适应神经网络控制与学习 被引量:5

Adaptive Neural Networks Control and Learning for Overhead Crane Systems
下载PDF
导出
摘要 针对三维桥式吊车的防摇摆控制,基于径向基函数神经网络(Radial Basis Function,RBF)研究了一种自适应防摇摆控制算法。在神经网络控制中,如果持续激励(Persistent Excitation,PE)条件得不到满足,便不能保证权值收敛,执行相同的控制任务时,仍需对神经网络进行重复训练。所设计的自适应神经网络控制器不仅能够快速精确地定位负载,并能有效抑制吊车系统的摆动;同时在对于周期或回归轨迹的跟踪中,系统中信号的一致有界得到了证明,在稳定控制中实现了部分权值的收敛以及未知闭环动态的局部准确逼近,即确定学习。最后,通过仿真验证了所设计控制器的正确性和有效性,为桥式吊车系统的防摇摆控制提供了新的控制算法。 Aiming at the anti-sway control of three-dimensional overhead crane systems,an adaptive neural control approach is proposed by using radial basis function(RBF)neural networks. The convergence of neural weights cannot be guaranteed because of dissatisfying the persistent excitation(PE)condition,as a result,the training of the controller has to be repeated even for the same control task. The designed controller not only achieves accurate position tracking,short transportation time and sway suppression,but also achieves uniformly ultimately boundness of all signals in the control system,the convergence of partial neural weights and locally-accurate approximate of unknown system dynamics for periodic or recurrent tracking control,i.e.,deterministic learning. Finally,numerical studies indicate the effectiveness and correctness of the approach. A new control strategy is designed for anti-sway control for overhead crane systems.
作者 赖啸 刘勇 代艳霞 罗文果 LAI Xiao;LIU Yong;DAI Yan-xia;LUO Wen-guo(The Department of Modern Manufacturing, Yibin Vocational and Technical College, Sichuan Yibin 644003, China;Yibin Sanjiang Machinery Co., Ltd., Sichuan Yibin 644007, China)
出处 《机械设计与制造》 北大核心 2018年第6期114-117,共4页 Machinery Design & Manufacture
关键词 确定学习 径向基函数神经网络 桥式吊车系统 Deterministic Learning RBF Neural Networks Overhead Crane Systems
  • 相关文献

参考文献2

二级参考文献45

  • 1王伟,易建强,赵冬斌,刘殿通.基于滑模方法的桥式吊车系统的抗摆控制[J].控制与决策,2004,19(9):1013-1016. 被引量:20
  • 2王伟,易建强,赵冬斌,刘殿通.桥式吊车系统的分级滑模控制方法[J].自动化学报,2004,30(5):784-788. 被引量:34
  • 3YI J Q,WANG W,ZHAO D B,et al.Cascade sliding mode controller for large scale underactuated systems[C]//International Conference on Intelligent Robots and Systems.Edmonton,Canada:IEEE,2005:301-306.
  • 4YANG J H,YANG K S.Adaptive coupling control for overhead crane systems[J].Mechatronics,2007,17(2):143-152.
  • 5KIMIAGHALAM B,HOMAIFAR A,BIKDASH M,et al.Genetic algorithms solution for unconstrained optimal crane control[C]//Proceedings of the 1999 Congress on Evolutionary Computation.Washington D C,American:IEEE,1999,3:2124-2130.
  • 6HU G,ONG C,TEO C.Minimum-time control of a crane with simultaneous traverse and hoisting motions[J].Journal of Optimization Theory and Applications,2004,120(2):395-416.
  • 7SCHINDELE D,MENN I,ASCHEMANN H.Nonlinear optimal control of an overhead travelling crane[C]//The 18th IEEE International Conference on Control Applications & Intelligent Control.St.Petersburg,Russia:IEEE,2009,28:8-10.
  • 8GARNI A,MOUSTAFA K,NIZAMI S.Optimal control of overhead cranes[J].Control Engineering Practice,1995,3(9):1277-1284.
  • 9JADDU H,VLACH M.Successive approximation method for nonlinear optimal control problems with application to a container crane problem[J].Optimal Control Applications and Methods,2002,23(5):275-288.
  • 10ARNOLD E,SAWODNY O,HILDEBRSNDT A,et al.Anti-sway system for boom cranes based on an optimal control approach[C]//Proceedings of the American Control Conference.Denvor,American:IEEE,2003,4:3166-3171.

共引文献23

同被引文献43

引证文献5

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部