期刊文献+

语音交互在三维虚拟船舶仿真平台中的应用 被引量:2

Application of Speech Interaction in 3D Virtual Ship Simulation Platform
下载PDF
导出
摘要 为了使三维虚拟船舶仿真平台能更好地适用于航海虚拟培训,从提升用户体验的角度出发设计方便用户使用的语音交互系统。通过制作航海专业领域内的语料库,训练声学模型;使用语言模型训练工具Srilm训练得到3-gram语言模型,将二者有机结合构成解码网络;建立反应航海实际操作的语音交互系统。系统测试表明,实现了设计三维虚拟船舶仿真平台语音交互功能。 In order to make the 3 D virtual ship simulation platform more suitable for the virtual training of navigation,from the perspective of enhancing the user experience,a user-friendly speech interactive system was designed. The acoustic model was trained by establishing the corpus in the field of navigation. The language model training tool Srilm was used to train the 3-gram language model. A decoding network was formed by combining the two models together. A speech interaction system for responding to the actual operation of navigation was established. Combined with marine reality,a sample test of speech interaction system was carried out. The purpose of designing speech interaction for the 3 D virtual ship simulation platform was achieved.
作者 符斌 任鸿翔 王德龙 FU Bin;REN Hong-xiang;WANG De-long(Key Laboratory of Marine Simulation & Control for Ministry of Communications,Dalian Maritime University,Dalian Liaoning 116026,China)
出处 《船海工程》 北大核心 2018年第3期133-136,共4页 Ship & Ocean Engineering
基金 国家863课题(2015AA016404) 海洋公益性行业科研专项(201505017-4) 交通运输部应用基础研究(2015329225240) 中央高校基本科研(3132016324)
关键词 船舶仿真平台 语音识别 语音合成 语音交互 ship simulation platform speech recognition speech synthesis speech interaction
  • 相关文献

参考文献2

二级参考文献10

  • 1Graff D. The 1998 broadcast news speech and language-model corpus. Slides from lecture at the 1997 DARPA Speech Recognition Workshop, Feb. 1997.
  • 2Rosenfeld R. A maximum entropy approach to adaptive statistical language modeling. Computer Speech and Language, 1996, 10:187-228.
  • 3Katz S M. Estimation of probabilities from sparse data for the language model component of speech recognizer. IEEE Transactions on Acoustics, Speech and Signal Processing, 1987, ASSP35:400-401.
  • 4Jelinek F,Mercer R L. Interpolated estimation of Markov source parameters from sparse data. In:Proc. of the Workshop on Pattern Recognition in Practice, Amsterdam, The Netherlands: North-Holland, May 1980,381-397.
  • 5Magerman D M. Natural Language Parrsing as Statistical Pattern Recognition:[PhD Thesis]. Stanford University, 1994.
  • 6Bahl L R,Brown P F, De Souza P V, Mercer R L. A tree-based statistical language model for natural language speech recognition. IEEE Transactions on Acoustics, Speech, and Signal Processing. 1989, 37(7): 1001-1008.
  • 7Rosenfeld R. Adaptive Statistical Language Modeling: A Maximum Entropy Approach: [PhD thesis]. Carnegie Mellon University, 1994- CMU Technical Report CMU-CS-94-138.
  • 8Darroch J, RatclifI D. Generalized iterative scaling for log-linear models. The annals of Mathematical statistics 1972, 43: 1470-1480.
  • 9Berger A L. Della Pietra S A, Della Pietra V J. A maximum entropy approach to natural language processing. Computational Linguistics 1996,22(1) : 39-71.
  • 10RosenIeld R. Two decades oI Statistical Language Modeling: Where Do We Go From Here? Proceedings of the IEEE, 2000, 88(8).

共引文献40

同被引文献14

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部