期刊文献+

Improved electrochemical performances of yttrium oxyfluoride-coated Li[Li0.2Mn0.54Ni0.13Co0.13]O2 for lithium ion batteries 被引量:3

Improved electrochemical performances of yttrium oxyfluoride-coated Li[Li_(0.2)Mn_(0.54)Ni_(0.13)Co_(0.13)]O_2 for lithium ion batteries
下载PDF
导出
摘要 The Li-rich layered oxides show a higher discharge capacity over 250 mAh/g and have been developed into a promising positive material for lithium ion batteries. A rare earth metal oxyfluoride YOF-coated Li[Lio.2Mno.54Ni0.13Co0.13]O2 composites have been synthesized by a simple wet chem- ical method. Crystal structure, micro-morphology and element valence of the pristine and YOF-coated Li[Li0.2Mn0.54Ni0.13Co0.13]O2 materials are characterized by XRD, SEM, TEM, and XPS. The results indicate that all materials exhibit a typical layered structure, and are made up of small and homogenous parti- cles ranging from 100 nm to 200 nm. In addition, YOF layer with a thickness of approximately 3-8 nm is precisely coated on the surface of the Li[Li0.2Mn0.54Ni0.13Co0.13]02. Constant current charge/discharge tests at various current densities show that the electrochemical performance of 2 wt% YOF-coated Li[Li0.2Mn0.54Ni0.13Co0.13]O2 has been improved significantly. 2 wt% YOF-coated Li[Li0.2Mn0.54Ni0.13Co0.13]O2 delivers the highest discharge capacity of 250.4 mAh/g at 20 mA/g among all the samples, and capacity retention of 87% after 100 charge/discharge cycles at 200 mA/g while that of the pristine one is only 81.6%. The superior electrochemical performance of 2wt% YOF-coated sample is ascribed to YOF coating layer, which could not only reduce side reactions between the electrode and liquid electrolyte, but also promote lithium ion migration. The Li-rich layered oxides show a higher discharge capacity over 250 mAh/g and have been developed into a promising positive material for lithium ion batteries. A rare earth metal oxyfluoride YOF-coated Li[Lio.2Mno.54Ni0.13Co0.13]O2 composites have been synthesized by a simple wet chem- ical method. Crystal structure, micro-morphology and element valence of the pristine and YOF-coated Li[Li0.2Mn0.54Ni0.13Co0.13]O2 materials are characterized by XRD, SEM, TEM, and XPS. The results indicate that all materials exhibit a typical layered structure, and are made up of small and homogenous parti- cles ranging from 100 nm to 200 nm. In addition, YOF layer with a thickness of approximately 3-8 nm is precisely coated on the surface of the Li[Li0.2Mn0.54Ni0.13Co0.13]02. Constant current charge/discharge tests at various current densities show that the electrochemical performance of 2 wt% YOF-coated Li[Li0.2Mn0.54Ni0.13Co0.13]O2 has been improved significantly. 2 wt% YOF-coated Li[Li0.2Mn0.54Ni0.13Co0.13]O2 delivers the highest discharge capacity of 250.4 mAh/g at 20 mA/g among all the samples, and capacity retention of 87% after 100 charge/discharge cycles at 200 mA/g while that of the pristine one is only 81.6%. The superior electrochemical performance of 2wt% YOF-coated sample is ascribed to YOF coating layer, which could not only reduce side reactions between the electrode and liquid electrolyte, but also promote lithium ion migration.
出处 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第4期1239-1246,共8页 能源化学(英文版)
基金 financially supported by the National Basic Research Program of China(Grant no.2015CB251100)
关键词 Li[Li0.2 Mn0.54 Ni0.13 Co0.13]O2 YOF-coated Cathode material Lithium ion battery Li[Li0.2 Mn0.54 Ni0.13 Co0.13]O2 YOF-coated Cathode material Lithium ion battery
  • 相关文献

同被引文献36

引证文献3

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部