期刊文献+

超宽带雷达建筑物结构稀疏成像 被引量:9

Sparse Imaging of Building Layouts in Ultra-wideband Radar
下载PDF
导出
摘要 超宽带雷达具备穿透墙体获得建筑物内部结构布局的能力,为建筑物内人员探测定位提供更丰富的信息。传统成像常存在较为严重的旁瓣,而且墙后目标成像位置也会受墙体影响而产生偏移。为提高成像质量,稀疏重构技术被引入穿墙成像领域,但传统方法对弱散射目标的重构概率较低。该文提出结合相干因子(Coherence Factor,CF)加权的稀疏重构方法,在稀疏重构提取支撑集的过程中,利用CF增强成像的结果来提高支撑集原子的正确性,降低稀疏重构过程中强散射目标旁瓣的影响,最终提高场景中弱散射目标的重构概率。同时建立了多层墙体位置校正模型,将场景校正放到稀疏重构之后进行,从而以较低的计算复杂度降低墙体定位误差。实测数据处理结果表明,相比于传统的稀疏成像方法,相同的数抽取比例下,该文提出的方法能够有效提高场景中弱散射目标重构概率,并将建筑物内部墙体定位误差降低至10 cm以内。 Ultra-WideBand(UWB) radar can reconstruct the layout of a building, providing rich information for detecting and locating humans in buildings. Traditional imaging methods suffer from serious sidelobes and location displacement of behind-the-wall target because of the influence of walls. Sparse recovery is introduced into the field of through-the-wall imaging to improve the imaging quality. However, the reconstruction probability of weak scattering targets is low in traditional methods. In this study, the combination of sparse recovery method and Coherence Factor(CF) weighting is proposed to improve the reconstruction probability of weak scattering targets inside a room. The quasi-establishment of the support set can be improved during sparse imaging by reducing the effect of the sidelobes of strong scattering targets with CF, ultimately enhancing the robustness of the sparse imaging of the building layout. A location correction model for multiple walls after sparse imaging is established, based on which the locating error of walls can be reduced with a low amount of calculation. The results of the measured data reveal that compared with the traditional generalized orthogonal matching pursuit method, the proposed methods can improve the reconstruction probability of weak scattering targets and reduce the locating error of the inner layouts of buildings to less than 10 cm.
作者 金添 宋勇平 Jin Tian;Song Yongping(College of Electronic Science, National University of Defense Technology, Changsha 410073, China)
出处 《雷达学报(中英文)》 CSCD 北大核心 2018年第3期275-284,共10页 Journal of Radars
基金 国家自然科学基金(61271441 61372161)~~
关键词 超宽带雷达 穿墙成像 稀疏重构 建筑物结构 Ultra-WideBand(UWB)radar Through-the-wall imaging Sparse recovery Building layout
  • 相关文献

参考文献6

二级参考文献311

  • 1杜小勇,胡卫东,郁文贤.基于稀疏成份分析的逆合成孔径雷达成像技术[J].电子学报,2006,34(3):491-495. 被引量:9
  • 2Donoho D L.Compressed sensing[J].IEEE Trans.Inform.Theory,2006,52(4):1289-1306.
  • 3Candes E J,Romberg J,Tao T.Robust uncertainty principles:Exact signal reconstruction from highly incomplete frequeney information[J].IEEE Trans.Inform.Theory,2006,52(2):489-509.
  • 4Candès E J,Tao T.Near-optimal signal recovery from ran-dom projections:Universal encoding strategies?[J].IEEE Trans.Inform.Theory,2006,52(12):5406-5425.
  • 5Candès E J,Wakin M B.People hearing without listen-ing:an introduction to compressive sampling[J].IEEESignal Process.Mag.,2008,25(2):21-30.
  • 6Valiollahzadeh S,Firouzi H,Babaie.Zadeh M,et al.Image Denoising Using Sparse Representations.Author manuscript,published in ICA 2009,LNCS 5441,2009.557-564.
  • 7Rauhut H,Schass K,Vandergheynst P.Compressed sens-ing and redundant dictionaries[J].IEEE Trans.on Inform.Theory,2008,54(5):2210-2219.
  • 8Shi G M,Lin J,Cheu X Y,et al.UWB echo signal detection with ultra-low rate sampling based on compressed sensing[J].IEEE Trans.On Circuits and Systems-Ⅱ:Express Briefs,2008,55(4):379-383.
  • 9Gurbuz A C,McClellan J H,Scott Jr,W R.Compressive sensing for subsurface imaging using ground penetrating radar[J].Signal Process.,2009,89(10):1959-1972.
  • 10Jouny I.Compressed Sensing for UWB Radar Target Signature Reconstruction[C].IEEE Workshop on DSP/SPE 2009,Jan.2009.714-719.

共引文献152

同被引文献50

引证文献9

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部