期刊文献+

基于子集重采样的高维资产组合的构建

Construction of High Dimensional Asset Portfolio Based on Subset Resampling
下载PDF
导出
摘要 在大数据时代,高维资产对于很多金融机构非常常见,维数诅咒的影响使得在投资组合中扮演着重要角色的协方差阵的估计效率较低。将子集重采样方法应用到投资组合中,首先,从所有资产构造的集合中抽取若干个子集;然后,采用BEKK模型来估计和预测子集的协方差阵,以解决维数诅咒问题;最后,对若干个子集的同一个资产的权重向量求平均,来求得每个资产的权重。通过实证分析发现,基于子集重抽样的投资组合明显要优于传统的均值——方差投资组合,其收益更高、波动更小,并且夏普比率值也较高。 In the era of big data,high dimensional assets are very common for many financial institutions. Because of the curse of the dimensionality,the estimation efficiency of covariance matrix which plays an import role in portfolio is low. This paper applies the subset resampling to portfolio. First,several subsets are extracted from the set of all assets;Then the BEKK model is used to estimate and predict the covariance matrix of subsets,to solve the curse of dimensionality. Finally,the weights of the same assets of several subsets are averaged to obtain the weight of each asset. Through empirical studies,we find that:the portfolio which based on subset resampling is significantly better than the mean-variance portfolio,with higher returns,smaller volatility,and higher Sharpe ratio.
作者 刘丽萍 LIU Li-ping(School of Mathematics and Statistics,Guizhou University of Finance and Economics,Guiyang 550025,Chin)
出处 《经济研究导刊》 2018年第19期78-81,共4页 Economic Research Guide
基金 国家社会科学基金项目(16CTJ013)
关键词 BEKK模型 高维资产组合 子集重采样方法 BEKK model high dimensional asset portfolio subset resampling method
  • 相关文献

参考文献2

二级参考文献26

  • 1Lam C, Fan J. Sparsistency and rates of convergence in large covariance matrix estimation [ J ]. Journal of Statistics, 2009 ( 37 ) : 4254 - 4278.
  • 2Cai T, Liu W. Adaptive thresholding for sparse eovarianee matrix estimation [ J ]. Journal of the American Statistical Association,2011 (106) :672 -684.
  • 3Yao F, Muller G H. Functional linear regression analysis for longitudinal data [ J ]. Journal of Statistics,2005 ( 6 ) : 2873 - 2903.
  • 4Fan J, Huang T, Li R. Analysis of Longitudinal Data With Semi- parametric Estimation of Covariance Function [ J ]. Journal of American Statistical Association, 2007 (102) :632 - 641.
  • 5Dai M, Guo W. Multivariate spectral analysis using Cholesky decomposition[J]. Journal of Biometrika,2004(91) :629 -643.
  • 6Li Y, Wang N, Hong M, et al. Nonparametric estimation of correlation functions in longitudinal and spatial data, with application to colon carcinogenesis experiments [ J ]. Journal of Statistics,2007 ( 35 ) : 1608 - 1643.
  • 7Ang A, Chen J. Asymmetric correlations of equity portfolios [ J]. Journal of Financial Economics, 2002 ( 63 ) :443 - 494.
  • 8Engle R. Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models [ J]. Journal of Business & Economic Statistics,2002 (20) : 339 -350.
  • 9Rangel J, Engle R. The Factor-Spline-GARCH Model for High and Low Frequency Correlations [ J]. Journal of Business & Economic Statistics,2012 (30) : 109 - 124.
  • 10Bai J, Ng S. Determining the number of factors in approximate factor models [ J ]. Journal of Econometrics, 2002 (70) : 191 - 221.

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部