期刊文献+

结合图像分割的MRI图像压缩感知重构 被引量:2

MRI image reconstruction based on compressed sensing with image segmentation
原文传递
导出
摘要 MRI成像因其无电离辐射、软组织对比度较好等优点被广泛应用,而它最大弊端是K空间数据采样时间过长。随着压缩感知理论的形成和发展,诞生了许多结合压缩感知理论的MRI图像重构方法。这些方法可以在相同的降采样条件下,获得更高的重构质量。在基于字典学习的MRI图像重构的研究基础上,加入了用于提取图像特征的图像分割算法及全变分惩罚项。实验结果表明,可以在基于字典学习的图像重构算法基础上将重构图像的峰值信噪比提升10%~20%。 Because of its non-ionizing radiation and soft tissue contrast,MRI imaging is widely used,but the biggest drawback is that the sampling time of K-space data is too long.With the formation and development of compressed sensing theory,many MRI image reconstruction methods that combined with compressed sensing theory have been born.These methods can achieve higher reconstruction quality under the same down-sampling conditions.Based on the research of MRI image reconstruction by dictionary learning,this paper adds the image segmentation algorithm and the total variation penalty item for extracting image features.Experimental results show that the peak signal to noise ratio of reconstructed images can be improved by 10%~20% on the basis of dictionary learning algorithm.
作者 傅雪 刘文波 Fu Xue;Liu Wenbo(College of Automation Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 211100,China)
出处 《电子测量技术》 2018年第11期94-98,共5页 Electronic Measurement Technology
关键词 压缩感知 字典学习 图像分割 图像重构 核磁共振图像 compressed sensing dictionary learning image segmentation image reconstruction magnetic resonance image
  • 相关文献

参考文献1

二级参考文献134

  • 1刘华军,任明武,杨静宇.一种改进的基于模糊聚类的图像分割方法[J].中国图象图形学报,2006,11(9):1312-1316. 被引量:23
  • 2Huseyin T, Kimia B. Volumetric segmentation of medical images by three dimensional bubbles [J]. Computer Vision and Image Understanding, 1997, 65(2): 246-258.
  • 3Chakraborty A, Staib H, Duncan S. Deformable boundary finding in medical images by integrating gradient and region infor- mation [J]. IEEE Transactions on Medical Image, 1996, 15(6) : 859-870.
  • 4Johnston B, Atkins M, Mackiewich B. Segmentation of multiple sclerosis lesions in intensity corrected multispectral MRI [J]. IEEE Transactions on Medical Image, 1996, 15(2) 154-169.
  • 5Mackiewich B. Intracranial boundary diction and radio frequency correction in magnetic resonance images [D]. Burnaby, B. C, Canada: Simon Fraster Univ. , 1995.
  • 6Rogowska J. Handbook of medical imaging processing and analysis[M]. New York:Academic Press, 2000: 69-86.
  • 7Ginneken B, Alejandro F F, Joes J. Active shape model segmentation with optimal features [J]. IEEE Transactions on Med- ical Imaging, 2002, 21(8): 924-933.
  • 8Pham L, Xu C Y, Prince I: A survey of current methods in medical image segmentation [J]. Annual Review of Biomedical Engineering, 2000,2: 315-317.
  • 9Paragios N, Deriche R. Geodesic active regions and level set methods for supervised texture segmentation [J]. International Journal of Computer Vision, 2002, 46(3): 223-247.
  • 10Aloise D, Deshpande A, Hansen P. NP-hardness of Euclidean sum-of-squares clustering [J]. Machine Learning, 2009, 2 (75) : 245-248.

共引文献17

同被引文献11

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部