期刊文献+

基于超分辨率重建的车牌图像增强算法 被引量:2

Application of Super-resolution Reconstruction Technology in License Plate Image Enhancement
下载PDF
导出
摘要 在低分辨率视频序列的车牌识别中,针对序列中车牌图像分辨率低、噪声污染严重的问题,提出了一种基于超分辨率重建技术增强车牌图像的方法。在图像实现亚像素级配准的基础上,根据局部图像明显的结构信息,构建归一化卷积的局部结构自适应高斯核函数,并将不同序列中包含的不同车牌信息的图像融合成一幅高分辨率图像。实验结果表明,该算法与传统方法相比,重构出的高分辨率图像具有更高的图像信噪比,且边缘保持性更好,能够有效地重构出高分辨率的车牌图像,提高车牌识别的准确率。 In the license plate recognition of low-resolution video sequences,aiming at the problem of low license plate image resolution and serious noise pollution in the sequence,a method of enhancing license plate image based on super-resolution reconstruction is proposed. Based on the sub-pixel collocation of images, a local structure-adaptive Gaussian kernel function with normalized convolution is constructed according to the obvious structure information of the local images,and the images of different license plate information contained in different sequences are merged into one high resolution image. The experimental results show that compared with the traditional method, the reconstructed high-resolution image has higher image signal-noise ratio and better edge retention, and the high-resolution license plate image effectively can be reconstructed. The accuracy of license plate is enhanced.
作者 山显响 刘云清 SHAN Xianxiang;LIU Yunqing(School of Electronics and Information Engineering,Changchun University of Science and Technology,Changchun 130022)
出处 《长春理工大学学报(自然科学版)》 2018年第3期106-110,共5页 Journal of Changchun University of Science and Technology(Natural Science Edition)
关键词 车辆牌照 亚像素级配准 归一化卷积 超分辨率 license plate number;sub-pixel-level registration;normalized convolution;super-resolution
  • 相关文献

参考文献10

二级参考文献115

  • 1张地,杜明辉.POCS超分辨率图像重构的快速算法[J].信息技术,2004,28(7):1-3. 被引量:4
  • 2刘卫光,崔江涛,周利华.插值和相位相关的图像亚像素配准方法[J].计算机辅助设计与图形学学报,2005,17(6):1273-1277. 被引量:29
  • 3范冲,龚健雅,朱建军.一种基于去混叠影像配准方法的POCS超分辨率序列图像重建[J].测绘学报,2006,35(4):358-363. 被引量:12
  • 4Tom B B,Katsaggelos A K. Resolution enhancement of video sequences using motion compensation [ C ]//Proceedings of the IEEE International Conference on Image Processing. Lausanne, Switzerland, 1996,1:713 -716.
  • 5Patti A J,Ahunbasak Y. Artifact reduction for set theoretic super resolution image reconstruction with edge adaptive constraints and high-order interpolants[ J ]. IEEE Trans Image Processing,2001,10 ( 1 ) : 179 - 180.
  • 6Irani M, Peleg S. Improving resolution by image registration[ J ] . CVGIP : Graphical Models and hnage Proc, 1991,53 ( 3 ) : 231 - 239.
  • 7Hardie R C, Barnard K J, Armstrong E E. Joint MAP registration and high-resolution image estimation using a sequence of undersampled images[ J]. IEEE Trans Image Processing, 1997,6(12) : 1621 - 1633.
  • 8Nguyen N, Milanfar P, Golub G. A computationally efficient superresolution image reconstruction algorithm [ J ]. IEEE Trans Image Processing,2001,10(4) :573 -583.
  • 9Baker S, Kanade T. Limits on super-resolution and how to break them [ J]. IEEE Trans Pattern Analysis and Machine Intelligence,2002,24 (9) :1167 -1183.
  • 10Shen H F,Li P X,Zhang L P,et al. A MAP algorithm to super-resolution image reconstruction [ C ]//Proceedings of the Third International Conference on Image and Graphics. 2004:544- 547.

共引文献252

同被引文献4

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部