期刊文献+

基于兴趣区域的无参考图像质量评价方法 被引量:1

Non-reference image quality assessment method based on region of interest
下载PDF
导出
摘要 为了评价不同失真类型图像的质量,提出了一种基于兴趣区域和自然图像统计特性的无参考图像质量评价方法。该方法对Itti模型进行改进,并利用改进的Itti模型提取失真图像的感兴趣区域和非感兴趣区域,在非下采样Contourlet域提取图像的统计特性,通过计算失真图像的不同区域与自然图像统计特性的差异来获得图像的质量分数。在LIVE数据集上与已有方法进行对比,实验结果表明,提出的方法和主观感知具有较好的一致性。 In order to evaluate the quality of images with different distortion types,this paper proposes a non-reference image quality assessment method based on Regions of Interests(ROI)and Natural Scene Statistics(NSS).Firstly,the existing Itti model is improved,and this improved Itti model is used to extract regions of both interests and non-interests from the distorted image.Secondly,the NSS of the image is extracted from the nonsubsampled contourlet domain.At last,the discrepancy between the NSS of the distorted image and that of the natural image is calculated as the quality score of the image.Comparing the proposed methods with existing methods on the LIVE dataset,experimental results show that the proposed method correlates well with human subjective perception.
作者 文继李 丁立新 万润泽 邹桢苹 WEN Jili;DING Lixin;WAN Runze;ZOU Zhenping(School of Computer Science,Wuhan University,Wuhan 430072,China;School of Economics and Management,Wuhan University,Wuhan 430072,China)
出处 《计算机工程与应用》 CSCD 北大核心 2018年第16期169-175,共7页 Computer Engineering and Applications
基金 湖北省自然科学基金面上项目(No.2015CFB405) 湖北省教育厅科学技术研究项目(No.Q20153003) 湖北省高等学校省级教学研究项目(No.2016419)
关键词 兴趣区域 非下采样CONTOURLET变换 自然场景统计特性(NSS) Region of Interest(ROI) nonsubsampled Contourlet transform Natural Scene Statistics(NSS)
  • 相关文献

参考文献6

二级参考文献50

  • 1Muller H, Michoux N, Bandon D, et al. A review of contentbased image retrieval systems in medical applications-clinical benefits and future directions[ J]. International Journal of Medical Informatics, 2004, 73(1): 1-23.
  • 2Mallat S. A theory for muhiresolution signal decomposition: the wavelet representation[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989, 11 (7) : 674-693.
  • 3Turner M R. Texture discrimination by Gabor functions [ J ]. Biological Cybernetics, 1986, 55(2-3): 71-82.
  • 4Idrissa M, Acheroy M. Texture classification using Gabor filters [ J ]. Pattern Recognition Letters, 2002, 23 (9) : 1095-1102.
  • 5Zhang Jian-guo, Tan Tie-niu, Ma Li. Invariant texture segmentation via circular Gabor filters [ C ]//Proceedings of International Conference on Pattern Recognition. Quebec, Canada: IEEE Computer Society, 2002: 901-904.
  • 6Andrysiak T, Choras M. Image retrieval based on hierarchical Gabor filters[ J]. International Journal of Applied Mathematics and Computer Science, 2005, 15 (4) : 471-480.
  • 7Zhu Zhen-feng, Tang Ming, Lu Han-qing. A new robust circular Gabor based object matching by using weighted Hausdorff distance [ J ]. Pattern Recognition Letters, 2004, 25 (4) : 515-523.
  • 8Pichler O, Teuner A, Hosticka B J. A comparison of texture feausing adaptive gabor filtering, pyramidal and treestructured wavelet transforms[ J]. Pattern Recognition, 1996, 29 (5): 733-742.
  • 9Manthalkar R, Biswas P K, Chatterji B N. Rotation invariant texture classification using even symmetric Gabor filters [ J]. Pattern Recognition Letters, 2003, 24(12): 2061-2068.
  • 10Arivazhagan S, Ganesan L, Priyal SP. Texture classification using Gabor wavelets based rotation invariant features[ J]. Pattern Recognition Letters, 2006, 27 (16) : 1976-1982.

共引文献75

同被引文献4

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部