摘要
[Objectives] The research aimed to study the impact on extraction effect of polysaccharide from Ganoderma lucidum( lingzhi) by different pretreatment methods. [Methods] The impacts on extraction of G. lucidum polysaccharide by soaking,microwave and air flow fine pulverization were contrasted,and the extraction effect of G. lucidum polysaccharide by combining the optimal pretreatment manner with hot water extraction,alcohol extraction,alkali extraction,ultrasonic binding enzyme extraction,and microwave extraction was compared. Finally,the property of G. lucidum polysaccharide obtained after air flow fine pulverization pretreatment was detected and analyzed by high performance liquid chromatography. [Results] The optimal pretreatment method was air flow fine pulverization. Compared with traditional method-direct extraction( coarse grinding combining hot water extraction),crude yield changed little,while polysaccharide content and yield were improved by 114% and 104%. The best combination manner was air flow fine pulverization pretreatment combining with alkali extraction. Compared with traditional method,crude yield,polysaccharide content and yield were improved by 76%,78% and 215% respectively. The property of G. lucidum polysaccharide obtained after air flow fine pulverization pretreatment was detected and analyzed by high performance liquid chromatography. It was found that the treatment method had little impact on the property of G. lucidum polysaccharide. [Conclusions]Air flow fine pulverization pretreatment could greatly improve extraction effect of G. lucidum polysaccharide,which mainly improved the content and yield of G. lucidum polysaccharide,and extraction was more complete,with less impact on the property of the extracted polysaccharide. It was speculated that air flow fine pulverization pretreatment mainly destroyed mechanical support wall membrane structure of G. lucidum fine powder,making that intracellular functional substances completely dissolved out of the cell,and the content would be studied in follow-up experiment.
[Objectives] The research aimed to study the impact on extraction effect of polysaccharide from Ganoderma lucidum( lingzhi) by different pretreatment methods. [Methods] The impacts on extraction of G. lucidum polysaccharide by soaking,microwave and air flow fine pulverization were contrasted,and the extraction effect of G. lucidum polysaccharide by combining the optimal pretreatment manner with hot water extraction,alcohol extraction,alkali extraction,ultrasonic binding enzyme extraction,and microwave extraction was compared. Finally,the property of G. lucidum polysaccharide obtained after air flow fine pulverization pretreatment was detected and analyzed by high performance liquid chromatography. [Results] The optimal pretreatment method was air flow fine pulverization. Compared with traditional method-direct extraction( coarse grinding combining hot water extraction),crude yield changed little,while polysaccharide content and yield were improved by 114% and 104%. The best combination manner was air flow fine pulverization pretreatment combining with alkali extraction. Compared with traditional method,crude yield,polysaccharide content and yield were improved by 76%,78% and 215% respectively. The property of G. lucidum polysaccharide obtained after air flow fine pulverization pretreatment was detected and analyzed by high performance liquid chromatography. It was found that the treatment method had little impact on the property of G. lucidum polysaccharide. [Conclusions]Air flow fine pulverization pretreatment could greatly improve extraction effect of G. lucidum polysaccharide,which mainly improved the content and yield of G. lucidum polysaccharide,and extraction was more complete,with less impact on the property of the extracted polysaccharide. It was speculated that air flow fine pulverization pretreatment mainly destroyed mechanical support wall membrane structure of G. lucidum fine powder,making that intracellular functional substances completely dissolved out of the cell,and the content would be studied in follow-up experiment.