摘要
Plasma radiation characteristics in EAST argon(Ar) gas and neon(Ne) gas seeding experiments are studied.The radiation profiles reconstructed from the fast bolometer measurement data by tomography method are compared with the ones got from the simulation program based on corona model.And the simulation results coincide roughly with the experimental data.For Ar seeding discharges,the substantial enhanced radiations can be generally observed in the edge areas at normalized radius ρ_(pol)~0.7–0.9,while the enhanced regions are more outer for Ne seeding discharges.The influence of seeded Ar gas on the core radiation is related to the injected position.In discharges with LSN divertor configuration,the Ar ions can permeate into the core region more easily when being injected from the opposite upper divertor ports.In USN divertor configuration,the W impurity sputtered from the upper divertor target plates are observed to be an important contributor to the increase of the core radiation no matter impurity seeding from any ports.The maximum radiated power fractions f_(rad)(P_(rad)/P_(heat)) about 60%–70% have been achieved in the recent EAST experimental campaign in 2015–2016.
Plasma radiation characteristics in EAST argon(Ar) gas and neon(Ne) gas seeding experiments are studied.The radiation profiles reconstructed from the fast bolometer measurement data by tomography method are compared with the ones got from the simulation program based on corona model.And the simulation results coincide roughly with the experimental data.For Ar seeding discharges,the substantial enhanced radiations can be generally observed in the edge areas at normalized radius ρ_(pol)~0.7–0.9,while the enhanced regions are more outer for Ne seeding discharges.The influence of seeded Ar gas on the core radiation is related to the injected position.In discharges with LSN divertor configuration,the Ar ions can permeate into the core region more easily when being injected from the opposite upper divertor ports.In USN divertor configuration,the W impurity sputtered from the upper divertor target plates are observed to be an important contributor to the increase of the core radiation no matter impurity seeding from any ports.The maximum radiated power fractions f_(rad)(P_(rad)/P_(heat)) about 60%–70% have been achieved in the recent EAST experimental campaign in 2015–2016.
基金
supported by National Natural Science Foundation of China (Grant Nos.11575247,11605243,11575244)
National Magnetic Confinement Fusion Science Program of China (Grant No.2014GB124006)