期刊文献+

基于色调映射和暗通道融合的弱光图像增强 被引量:5

Low-Light Image Enhancement Based on Tone Mapping and Dark Channel Fusion
下载PDF
导出
摘要 针对阴天或夜晚等弱光条件下拍摄的图像具有亮度低、对比度低和细节模糊等问题,提出了一种基于色调映射和暗通道融合的弱光图像增强方法.首先,根据弱光及其反转图像的特点,提出面向弱光图像的透射率估计方法,进而获得场景深度信息,并将其融入色调映射函数设计;同时利用暗通道图像区分光源区域,以修正色调映射函数参数,使其能够根据场景深度自适应调整图像亮度;另一方面,增强后的暗通道图可有效突出图像的细节信息,将经过色调映射后的V通道图像和暗通道图进行加权融合,得到最后的增强结果.实验结果表明,本文方法不仅显著改善图像亮度、增强对比度、恢复出更多的图像细节,还能有效去除块效应和晕轮伪影,视觉效果理想. Images captured at night or under low light conditions have the problems of low intensity,low contrast and blurring of details.This paper proposed a new low-light image enhancement method based on tone mapping and dark channel fusion.Firstly,an improved transmission estimation method was presented to obtain the depth information by using the statistics characteristics of low light image and its inversion.Then,the tone mapping function was designed by incorporating the scene depth.In addition,the pixel-wise dark channel was used to recognize the light source region with the purpose of modifying the parameter of the tone mapping function,and so the image brightness can be adjusted adaptively.In order to preserve more image details,the pixel-wise dark channel was enhanced and fused with the enhanced V-channel image to get the final results.Experimental results show that the proposed method not only improves the image brightness and contrast with more details,but also removes block effects and halo artifacts with ideal visual effects.
作者 杨爱萍 赵美琪 宋曹春洋 王金斌 Yang Aiping;Zhao Meiqi;Song Caochunyang;Wang Jinbin(School of Electrical and Information Engineering,Tianjin University,Tianjin 300072,Chin)
出处 《天津大学学报(自然科学与工程技术版)》 EI CSCD 北大核心 2018年第7期768-776,共9页 Journal of Tianjin University:Science and Technology
基金 国家自然科学基金资助项目(61372145 61472274 61771329)~~
关键词 图像增强 深度信息 色调映射 暗通道 融合 image enhancement depth information tone mapping dark channel fusion
  • 相关文献

参考文献1

二级参考文献10

  • 1Kim J Y, Kim L S, Hwang S H. An advanced contrast enhancement using partially overlapped sub-block histogram equalization [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2001, 11 (4): 475-484.
  • 2Narasimhan $ G, Nayar S K. Vision and the atmosphere [J]. IJCV(S0920-5691), 2002, 48(3): 233-254.
  • 3Narasimhan S G, Nayar S K. Contrast restoration of weather degraded images [J]. PAMI(S0162-8828), 2003, 25(6):713-724.
  • 4Narasimhan S G, Nayar S K. Interactive (De)Weathering of an Image using Physical Models [A]. IEEE Workshop on Color and Photometric Methods in Computer Vision [C]. France, 2003.
  • 5Kopf J, Neubert B, Chen Bet al. Deep photo: Model-based photograph enhancement and viewing [A]. SIGGRAPH Asia [C]. 2008.
  • 6Tan R T. Visibility in bad weather from a single image [A]. CVPR [C]. 2008.
  • 7Fattal R. Single image dehazing [A]. In SIGGRAPH [C]. 2008. 1-9.
  • 8He Kaiming, Sun Jian, Tang Xiaoou. Single image haze removal using dark channel prior [A]. CVPR [C]. 2009. 1956-1963.
  • 9Levin A, Lischinski D, Weiss Y. A closed form solution to natural image matting [A]. CVPR [C]. 2006, 1: 61-68.
  • 10祝培,朱虹,钱学明,李晗.一种有雾天气图像景物影像的清晰化方法[J].中国图象图形学报(A辑),2004,9(1):124-128. 被引量:115

共引文献131

同被引文献48

引证文献5

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部