摘要
如果n为奇素数,利用初等方法得出了椭圆曲线y^2=nx(x^2-16),当n=5时,有整数点(x,y)=(0,0),(5,±15);当n=29时,有正整数点(x,y)=(0,0),(499,±41 801 760);n≠5,29时,仅有整数点(x,y)=(0,0).
Let n be odd prime.Using elementary method,it was proved that if n=5,then the elliptic curve in title has integer points(0,0),(5,±15);if n=29,then the elliptic curve in title has integer points(0,0),(499,±41 801 760);if n≠5,29,then the elliptic curve in title only has integer point(0,0).
作者
万飞
李玉龙
WAN Fei;LI Yulong(College of Teachers Education,Honghe University,Mengzi 661199,China)
出处
《湖北民族学院学报(自然科学版)》
CAS
2018年第1期49-51,共3页
Journal of Hubei Minzu University(Natural Science Edition)
基金
云南省教育厅科研基金项目(2014Y462)
红河学院校级课题(XJ15Y22)
关键词
椭圆曲线
整数点
奇素数
同余
elliptic curve
positive integer point
odd prime
congruence