期刊文献+

椭圆曲线y^2=nx(x^2-16)的整数点 被引量:3

The Positive Integral Points on the Elliptic Curve y^2=nx(x^2-16)
下载PDF
导出
摘要 如果n为奇素数,利用初等方法得出了椭圆曲线y^2=nx(x^2-16),当n=5时,有整数点(x,y)=(0,0),(5,±15);当n=29时,有正整数点(x,y)=(0,0),(499,±41 801 760);n≠5,29时,仅有整数点(x,y)=(0,0). Let n be odd prime.Using elementary method,it was proved that if n=5,then the elliptic curve in title has integer points(0,0),(5,±15);if n=29,then the elliptic curve in title has integer points(0,0),(499,±41 801 760);if n≠5,29,then the elliptic curve in title only has integer point(0,0).
作者 万飞 李玉龙 WAN Fei;LI Yulong(College of Teachers Education,Honghe University,Mengzi 661199,China)
出处 《湖北民族学院学报(自然科学版)》 CAS 2018年第1期49-51,共3页 Journal of Hubei Minzu University(Natural Science Edition)
基金 云南省教育厅科研基金项目(2014Y462) 红河学院校级课题(XJ15Y22)
关键词 椭圆曲线 整数点 奇素数 同余 elliptic curve positive integer point odd prime congruence
  • 相关文献

参考文献9

二级参考文献36

  • 1祝辉林,陈建华.两个丢番图方程y^2=nx(x^2±1)[J].数学学报(中文版),2007,50(5):1071-1074. 被引量:30
  • 2Luca F., Walsh P. G., On a Diophantine equation of Cassels, Glasgow Math. J., 2005, 47(2): 303-307.
  • 3Luca F.,Walsh P. G., Squares in Lucas sequences with Diophantine applications, Acta Arith., 2001, 100(1): 47-62.
  • 4Walsh P. G., A note on Ljunggren's theorem about the Diophantine equation aX^2 - bY^4 = 1, Comptes Rendues Mathematical Reports of the Royal Society of Canada, 1998, 20(4): 113-119.
  • 5Bennett M. A., Lucas square pyramidal problem revisited, Acta Arith., 2002, 105(4): 341-347.
  • 6Cassels J. W. S., A Diophantine equation, Glasgow Math. J.,1985, 27(1):11-18.
  • 7Ljunggren W., Ein Satz uber die diophantische Gleichung Ax^2 - By^4 = C(C = 1, 2, 4), Skand Mat. -Kongr. Lund, 1953, 188-194.
  • 8Cohn J. H.E.,The Diophantine equation x^4 + 1 = dy^2, Mathematics of Computation, 1997, 66(219): 1347- 1351.
  • 9Cohn J. H. E., The Diophantine equation x^4 - dy^2 = 1, Acta Arith., 1997, 78(3): 401-403.
  • 10Bennett M. A., Walsh P. G., The Diophantine equation b^2X^4 - dY^2 =1, Pro. American Math. Soc., 1999, 127(12): 3481-3491.

共引文献34

同被引文献31

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部