期刊文献+

融合评分差异和兴趣相似性的协同过滤推荐算法 被引量:4

Collaboration Filtering Recommendation Algorithm Based on Ratings Difference and Interest Similarity
下载PDF
导出
摘要 为了解决在传统的协同过滤推荐算法中存在的相似性计算不准确的问题,并提高推荐系统的质量,提出一种用户相似度计算方法。在用户共同评分的基础上,该方法根据评分差值和时间特征来计算评分差值的信息熵;然后,利用用户评分差值的信息熵和评分项目属性计算出用户的相似度;最后,根据用户相似度计算出用户的最近邻居,以此预测目标项目的评分。实验结果表明,所提算法更加准确地实现了目标用户最近邻居的查找,有效地提高了推荐的准确性。 In order to improve the quality of recommendation system and solve the existing similarity calculation inaccuracy problem of traditional collaborative filtering algorithm,this paper put forward a method to calculate user similarity.Based on the user common ratings,this method firstly calculates the information entropy of rating differentials according to rating differentials and time features.Then it evaluates the similarity of the user by utilizing the information entropy of rating differentials and the rated item attributes.Finally,the nearest neighbors would be calculated according to the user similarity,which helps predict the rating of the target item.The experimental results show that the proposed algorithm makes the target user find the nearest neighbors more accurately and improves the recommendation accuracy effectively.
作者 魏慧娟 戴牡红 WEI Hui-juan ,DAI Mu- hong(College of Information Science and Engineering, Hunan University,Changsha 410082 ,Chin)
出处 《计算机科学》 CSCD 北大核心 2018年第B06期398-401,422,共5页 Computer Science
关键词 协同过滤 相似性计算 共同评分 项目属性 Collaborative filtering Similarity measure Common ratings Item attributes
  • 相关文献

参考文献2

二级参考文献31

  • 1陈健,印鉴.基于影响集的协作过滤推荐算法[J].软件学报,2007,18(7):1685-1694. 被引量:59
  • 2Goldberg D, Nichols D, Oki B M, et al. Using collaborative filtering to weave an information Tapestry[J]. Communications of the ACM,1992,35(12):61-70.
  • 3Resnick P, Iacovou N, Suchak M, et al. GroupLens: An open architecture for collaborative filtering of netnews[C]//Proc, of the ACM CSCW' 94 Conf. on Computer Supported Cooperative Work. Chapel Hill:ACM, 1994:175-186.
  • 4Shardanand U,Mages'P. Social information filtering:Algorithms for automating "Word of Mouth"[C]//Proc. of the ACM CHI' 95 Conf. on Human Factors in Computing Systems. New York: ACM Press, 1995:210-217.
  • 5Hill M, Stead L, Rosenstein M, et al. Recommending and evaluating choices in a virtual community of use[C]//Proc, of the ACM CHI'95 Conf. on Human Factors in Computing Systems. New York: ACM Press, 1995 : 194-201.
  • 6Claypool M, Gokhale A, Miranda T, et al. Combining contentbased and collaborative filters in an online newspaper [C]// ACM SIGIR' 99 Workshop on Recommender Systems: Algorithms and Evaluation. Berkeley: ACM, 1999.
  • 7Linden G, Smith B, York J. Amazon. com recommendations: Itern-to-item collaborative filtering[J]. IEEE Internet Computing,2003,7(1) :76-80.
  • 8Holmquist L E,Jacobsson M, Rost M. When media gets wise: Collaborative filtering with mobile media agents [C]//Proc. of the IUI 2006, the 10^th Int'l Conf. on Intelligent User Interfaces. Sydney. http://portal. acm.org/, 2006.
  • 9Park S T, Pennock D M. Applying collaborative filtering techniques to movie search for better ranking and browsing[C]// Proc. of the 13th ACM SIGKDD International Conf. on Knowledge Discovery and Data Mining. New York: ACM, 2007 : 550- 559.
  • 10Sarwar B, Karypis G, Konstan J, et al. Item-based collaborative filtering recommendation algorithms [C]//Proc. of 10^th Int'l World Wide Web Conf. New York: ACM Press, 2001:285-295.

共引文献71

同被引文献38

引证文献4

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部