期刊文献+

基于标签信息特征相似性的协同过滤个性化推荐 被引量:13

Collaborative Filtering Personalized Recommendation Based on Similarity of Tag Information Feature
下载PDF
导出
摘要 标签推荐系统旨在利用标签数据为用户提供个性化推荐。已有的基于标签的推荐方法往往忽视了用户和资源本身的特征,而且在相似性度量时仅针对项目相似性或用户相似性进行计算,并未充分考虑二者之间的有效融合,推荐结果的准确性较低。为了解决上述问题,将标签信息融入到结合用户相似性和项目相似性的协同过滤中,提出融合标签特征与相似性的协同过滤个性化推荐方法。该方法在充分考虑用户、项目以及标签信息的基础上,利用二维矩阵来定义用户-标签以及标签-项目之间的行为。构建用户和项目的标签特征表示,通过基于标签特征的相似性度量方法计算用户相似性和项目相似性。基于用户标签行为和用户与项目的相似性线性组合来预测用户对项目的偏好值,并根据预测偏好值排序,生成最终的推荐列表。在Last.fm数据集上的实验结果表明,该方法能够提高推荐的准确度,满足用户的个性化需求。 Tag recommendation systems are aimed to provide personalized recommendation using tag data for users.Previous tag based recommendation methods usually neglect the characteristics of users and items,and similarity measures are unconsidered fully incorporating effectively both user similarity and item similarity,which leads to deviation of recommendation results.To address this issue,this paper proposed the collaborative filtering recommendation method of combining tag features and similarity for personalized recommendation.Two-dimensional matrix is used to define actions among user-tag and tag-item based on integrating information among users,tags and items.Tag features representation is constructed,and user similarity and item similarity are calculated by similarity measure method based on tag features.The user preferences for items are predicted by their tag behaviors and linear combination of similarity of users and items,and the recommended list is generated according to the rank of preferences.The experimental results on Last.fm show that the proposed method can improve recommendation accuracy and satisfy the requirement for users.
作者 何明 要凯升 杨芃 张久伶 HE Ming ,YAO Kai- sheng, YANG Peng ,ZHANG Jiu -ling(Faulty of Information Technology,Beijing University of Technology,Beijing 100124,Chin)
出处 《计算机科学》 CSCD 北大核心 2018年第B06期415-422,共8页 Computer Science
基金 国家自然科学基金项目(91646201 91546111) 北京市教委科研计划一般项目(KM201710005023)资助
关键词 协同过滤 标签 推荐系统 相似性计算 Collaborative filtering Tag Recommendation systems Similarity computation
  • 相关文献

参考文献9

二级参考文献149

  • 1邢春晓,高凤荣,战思南,周立柱.适应用户兴趣变化的协同过滤推荐算法[J].计算机研究与发展,2007,44(2):296-301. 被引量:148
  • 2梅放,林鸿飞.基于社会化标签的移动音乐检索[c]//第五届全国信息检索学术会议论文集.北京:中国中文信息学会,2009:262-271.
  • 3Guy M,Tonkin E.Folksonomies:Tidying up tags-D-Lib Magazine,2006,12(1).[doi:10.1045/january2006-guy].
  • 4Sigurbj-rnsson B,van Zwol R.Flickr tag recommendation based on collective knowledge.In:Huai JP,Chen R,Hon HW,Liu YH,Ma WY,Tomkins A,Zhang XD,eds.Proc.of the 17th Int’l Conf.on World Wide Web.New York:ACM,2008.327-336.[doi:10.1145/1367497.1367542].
  • 5Hotho A,J-schke R,Schmitz C,Stumme G.Information retrieval in folksonomies:Search and ranking.In:Sure Y,Domingue J,eds.Proc.of the Semantic Web:Research and Applications,3rd European Semantic Web Conf.Heidelberg:Springer-Verlag,2006.411-426.[doi:10.1007/11762256_31].
  • 6Symeonidis P,Nanopoulos A,Manolopoulos Y.A unified framework for providing recommendations in social tagging systemsbased on ternary semantic analysis.IEEE Trans.on Knowledge and Data Engineering,2010,22(2):179-192.[doi:10.1109/TKDE.2009.85].
  • 7Harvey M,Baillie M,Ruthven I,Carman M.Tripartite hidden topic models for personalised tag suggestion.In:Gurrin C,He YL,Kazai G,Kruschwitz U,Little S,Roelleke T,Rüger SM,van Rijsbergen K,eds.Advances in Information Retrieval,the 32ndEuropean Conf.on IR Research.Heidelberg:Springer-Verlag,2010.432-443.[doi:10.1007/978-3-642-12275-0_38].
  • 8Blei DM,Ng AY,Jordan MJ.Latent dirichlet allocation.Journal of Machine Learning Research,2003,3:993-1022.[doi:10.1162/jmlr.2003.3.4-5.993].
  • 9Hofmann T.Unsupervised learning by probabilistic latent semantic analysis.Machine Learning,2001,42(1/2):177-196.[doi:10.1023/A:1007617005950].
  • 10Banerjee A,Basu S.Topic models over text streams:a study of batch and online unsupervised learning.In:Proc.of the 2007 SIAMInt’l Conf.on Data Mining.Philadelphia:SIAM,2007.431-436.

共引文献258

同被引文献116

引证文献13

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部