期刊文献+

一种高效的社交网络朋友推荐方案 被引量:4

Efficient Friend Recommendation Scheme for Social Networks
下载PDF
导出
摘要 当今社会,人们越来越多地通过社交网络来发言、聊天、交友。在互动过程中,除了用户主动关注感兴趣的人之外,社交网络也会为其推荐朋友。然而,所推荐的朋友大部分只是社交网络的推广,不一定符合用户的兴趣。针对社交网络推荐朋友的随机性和不可靠等问题,研究并提出了一种基于用户兴趣标签匹配的高效朋友推荐方案。首先,通过Word2Vec来训练语料库中的关键词,得到每个关键词的向量,产生一个词向量空间。其次,利用余弦相似度技术计算关键词之间的相似度并通过实验进行比较。实验中,综合选取合适的相似度值作为两个词向量是否相似的判断阈值。最后,将选取的相似度阈值应用到所提出的朋友兴趣匹配推荐算法中,并进行性能测试和各方案的仿真比较。结果表明,所提出的方案可靠且准确。 With the rapid development of modern network technology,human society has entered the era of information.An increasing number of people prefer to talk and make friends with others through social networks.Besides the people or events which users initiatively focus on,social network will also recommend alternative users.However,most of the alternative users are the promotion of social networks.In this paper,for the accuracy and reliability of social networks recommendation,a new scheme based on tag matching was proposed.First,each word in the corpus is trained by Word2 Vec,and then a word vectors space can be obtained and the similarity among words can be obtained by using the cosine similarity.Secondly,through the similarity comparison experiments,this paper chose an appropriate similarity value as the threshold to judge whether two words are similar.Finally,the similarity threshold was applied to the matching algorithm.The simulation experiments show that the recommend users are relatively reliable and accurate.
作者 程宏兵 王珂 李兵 钱漫匀 CHENG Hong- bing1, WANG Ke2 ,LI Bing2, QIAN Man- yun1(College of Computer Science &Technoligy,Zhejiang University of Technology,Hangzhou 310023,China;2Jinhua Branch of Zhejiang Power Company,National Grid,Jinhua,Zhejiang 321000,Chin)
出处 《计算机科学》 CSCD 北大核心 2018年第B06期433-436,452,共5页 Computer Science
基金 国家自然科学基金项目(61402413)资助
关键词 社交网络 朋友推荐 Word2Vec 相似度计算 Social networks Friend recommendation Word2 Vec Similarity degree computing
  • 相关文献

参考文献2

二级参考文献41

  • 1Yin Z,Gupta M,Weninger T.A unified framework for link re-commendation with user attributes and graph structure [C]∥Proceedings of the 19th International Conerence on World Wide Web.New York,USA,2010,6:1200-1212.
  • 2Chen J,et al.Make new friends,but keep the old:Recommend ing people on social networking sites[C]∥Proceeding of the 27th International Conference on Human Factors in Computing Systems.New York:ACM,2009,2:201-210.
  • 3Zaschke T,Zimmerli C,Norrie M C.The PH -Tree:A Space-Efficient Storage Structure and MultiDimen sional Index.Institute for information Systems[J].Department of Computer Science ETH Zu rich,Switzerland,2014,7:659-671.
  • 4Wolfe A W.Social network analysis:Methods and applications[J].Cambridge American Ethnologist,1997,24(1):210-230.
  • 5German U,Joanis E,Larkin S.Tightly Packed Tries:How to Fit Large Models into Memory,and Make them Load Fast,Too[C]∥Proc.of the NAACLHLT Workshop.2009,8:31-39.
  • 6Leskovec J,Lang K J,Mahoney M.Empirical comparision of algorithms for network community detection [C]∥Proceedings of the 19th International Conference on World Wide Web.New York:ACM,2010,9:630-655.
  • 7Alan M,Massimiliano M,Krishnap G,et al.Bhattacharjcc Bobby,Mcasurement and analysis of online social network[C]∥Proccedings of the 7th ACM SIGCOMM Conference on Internet Mcasurement.SanDiego,CA,USA,2007,5:29-45.
  • 8Chen Ke-han,Han Pan-pan,Wu Jian.User Clustering Based Social Network Recommentdation[J].College of Computer Science and Technology,2013,3:100-107.
  • 9Herlocker J.Evaluating collaborative filtering recom mendersystems[J].ACM Transactions on Information systens,2004,2(1):5-53.
  • 10CONTI M, KUMAR M. Opportunities in opporttmistic computing[J]. Computer, 2010, 43(1): 42-50.

共引文献2

同被引文献49

引证文献4

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部