期刊文献+

基于扩展核熵负载矩阵的发酵过程故障监测 被引量:4

Fault monitoring of fermentation process based on extended kernel entropy load matrix
下载PDF
导出
摘要 为有效降低多阶段发酵过程硬分类缺陷而导致的误报和漏报率,本文提出了一种基于扩展核熵负载矩阵的阶段划分策略.首先,将发酵过程的三维训练数据按批次方向展开成二维数据矩阵,对每个时间片矩阵进行核熵成分分析(kernel entropy component analysis,KECA)得到其主元和负载矩阵,根据所得主元个数实现操作阶段的第1步划分;之后将时间片矩阵添加到核熵负载矩阵当中得到扩展核熵负载矩阵,计算各扩展负载矩阵间的相似度,并用模糊C–均值方法对其进行第二次阶段划分.通过增加对体现生产过程改变的时间指标的考虑,有效克服了硬化分的不足,避免了跳变点错分的情况.最终将整个生产操作过程划分为不同的稳定阶段和过渡阶段,并在划分的每一阶段中分别建立KECA监测模型;最后利用青霉素发酵仿真平台和大肠杆菌生产白介素–2数据进行实验.实验结果表明该方法不但可以准确地对生产过程进行阶段划分、降低误报率,而且可以使生产过程故障监测的时间大大提前. Hard classification for multistage fermentation process and cause of the defects of false alarm and alarm failure, in order to effectively reduce the omission and the rate of false positives, this paper proposes a strategy based on extended nuclear entropy load matrix. First, the three-mention training data array of fermentation process is unfolded in batch ways, resulting in two-dimension forms. Then, kernel entropy component analysis(KECA) was done for each time slice matrix to obtain its load matrix. After that, time slice matrix was added to the nuclear load matrix of entropy, and the change of the nuclear load matrix of entropy was utilized to describe the changes of batch processes.The KECA monitoring model was established at each stage of the division after the stage of nuclear load matrix of entropy was determined by FCM algorithm. At last, the effectiveness and utility of the proposed method were validated through the simulation of fed-batch penicillin and E. coli production of interleukin-2. Results showed, the proposed method could not only divide the stage and reduce the false alarm precisely, but also detect the production difficulty more advance.
作者 高学金 杨彦霞 王普 李晓理 常鹏 齐咏生 GAO Xue-jin;YANG Yan-xia;WANG Pu;LI Xiao-li;CHANG Peng;QI Yong-sheng(Faculty of Information Technology,Beijing University of Technology,Beijing 100124,China;School of Electric Power,Inner Mongolia University of Technology,Huhhot Inner Mongolia,010051,China)
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2018年第6期813-821,共9页 Control Theory & Applications
基金 国家自然科学基金项目(61640312 61473034 61673053 61174109) 北京市自然科学基金项目(4172007) 北京科技新星计划交叉学科合作项目(Z161100004916041)资助~~
关键词 过程监测 主元分析 多阶段 发酵过程 process monitoring principal component analysis multistage fermentation process
  • 相关文献

参考文献4

二级参考文献41

  • 1谢磊,何宁,王树青.步进MPCA及其在间歇过程监控中的应用[J].高校化学工程学报,2004,18(5):643-647. 被引量:8
  • 2周志杰,胡昌华,周东华.基于非解析模型的动态系统故障预报技术[J].信息与控制,2006,35(5):608-613. 被引量:15
  • 3AGUADO D, FERRER A. Mullivariate SPC of a sequencing batch reactor for wastewater treatment: [J]. Chemometrics and Intelligent Laboratory Systems, 2007, 85(1): 82 - 93.
  • 4YU J, QIN S J. Multiway Gaussian mixture model based multiphase batch process monitoring [J]. bMustrial & Engineering Chemistry Research, 2009, 48(18): 8585 - 8594.
  • 5CAMACHO J, PICO J. Multi-phase principal component analysis for batch processes modeling [J]. Chemometrics and Intelligent Labora- tory Systems, 2007, 81(2): 127- 136.
  • 6LU N, GAO E Sub-PCA modeling and on-line monitoring strategy for batch processes [J]. American Institute of Chemical Engineers Journal, 2004, 50(1): 255 - 259.
  • 7ZHAO C, WANG E Improved batch process monitoring and quality prediction based on multiphase statistical analysis [J]. Industrial & Engineering Chemistry Research, 2008, 47(3): 835 - 849.
  • 8ZHAO C, WANG F. Adaptive monitoring method for batch processes based on phase dissimilarity updating with limited modeling data [J]. Industrial & Engineering Chemistry Research, 2007, 46(14): 4943 - 4953.
  • 9CUI P L, LI J H. Improved kernel principal component analysis for fault detection [J]. Expert Systems with Applications, 2008, 34(2): 1210- 1219.
  • 10TIAN X M, ZHANG X L, DENG X G. Multiway kernel indepen- dent component analysis based on feature samples for batch process monitoring [J]. Neurocomputing, 2009, 72(7/9): 1584 - 1596.

共引文献42

同被引文献40

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部