期刊文献+

先进绝热压缩空气储能电站日前电力市场主从博弈竞标策略 被引量:7

Day-ahead strategic bidding for advanced adiabatic compressed air energy storage plant: a Stackelberg game approach
下载PDF
导出
摘要 先进绝热压缩空气储能(advanced adiabatic compressed air energy storage,AA–CAES)是支撑电力系统削峰填谷、阻塞管理及可再生能源消纳的有效手段之一.在储能产业商业化初期,研究面向日前电力市场的竞标策略对实现AA–CAES电站的经济运行大有裨益.本文在计及压力动态的AA–CAES运行模型基础上,采用主从博弈研究了AA–CAES电站竞标策略.作为主从博弈Leader,AA–CAES电站运营商向日前电力市场上报竞标标的(储能功率、发电功率、储能电价及发电电价);作为主从博弈Follower,市场交易机构以最大化社会福利出清电力市场.为高效求解主从博弈竞标模型,采用Karush-Kuhn-Tucker(KKT)最优性条件及布尔展开法将双层主从博弈竞标模型转化为单层混合整数线性规划.IEEE–24节点测试系统算例表明,AA–CAES电站可利用低谷电进行充电,在高峰时刻再以高价售出,实现套利运行.基于主从博弈的日前电力市场竞标策略,可支撑AA–CAES电站的经济运行. Advanced adiabatic compressed air energy storage(AA–CAES) can support the peak-shaving and the renewable integration of power systems. At the early commercialization of energy storage facilities, the bidding strategy in the day-ahead electricity market is crucial for the economic operation of AA–CAES plants. We investigated the day-ahead bidding and offering strategies of the AA–CAES plant with a Stackelberg game theoretic approach based on an AA–CAES operation model considering the pressure dynamic. As the leader of the game, the AA–CAES owner submits electricity offers and bids regarding quantity and price, to the independent system operator, who acts as the follower and clears the electricity market to maximize social welfare. To solve the bi-level leader-follower bidding model efficiently, we leverage the KKT optimality condition, and the binary expansion method to approximate and transform it as mixed-integer linear programming. The experiments on a modified IEEE–24 bus system demonstrated the energy arbitrage behavior of AA–CAES by purchasing the off-peak low-price electricity and selling to balance the peak-load with a higher price. The leader-follower game based bidding and offering strategies in the day-ahead electricity market can benefit the economic operation of the AA–CAES plant.
作者 李瑞 陈来军 梅生伟 薛小代 LI Rui;CHEN Lai-jun;MEI Sheng-wei;XUE Xiao-dai(Department of Electrical Engineering,Tsinghua University,Beijing 100084,China;State Key Lab of Control and Simulation of Power Systems and Generation Equipments,Beijing 100084;School of QiDi(TUS)Renewable Energy,Qinghai University,Xining Qinghai 810016,China)
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2018年第5期662-667,共6页 Control Theory & Applications
基金 国家自然科学基金创新群体项目(51621065) 青海省基础研究项目(2016–ZJ–742) 青海省科技成果转化专项(2017–GX–101) 青海省自然科学基金项目(2017–ZJ–932Q) 国家电网公司科技项目(SGRI–DL–71–15–006)资助~~
关键词 主从博弈 先进绝热压缩空气储能 日前电力市场 策略竞标 混合整数线性规划 Stackelberg galne advanced adiabatic compressed air energy storage day-ahead electricity market strategic bidding mixed-integer linear programming
  • 相关文献

参考文献3

二级参考文献43

  • 1方金益,徐孜俊.金坛盐矿建地下盐穴储气库的务件[J].中国井矿盐,2007,38(1):35-36. 被引量:4
  • 2谭蓉蓉.亚洲首个“盐穴储气库”在金坛投运[J].天然气工业,2007,27(2):100-100. 被引量:4
  • 3王莹莹.含风光发电的电力系统博弈模型及分析研究.清华大学,2012.
  • 4Saacl W, Han Z, Poor H V, et al. Game-theoretic methods for the smart grid: An overview of microgrid systems, demand-side management, and smart grid communications. IEEE Signal Processing Magazine, 2012, 29(5): 86-105.
  • 5Mei S W, Wang Y Y, Liu F, et al. Game approaches for hybrid power system planning. IEEE Transactions on Sustainable Energy, 2012, 3(3): 506-517.
  • 6Mei S W, Zhang D, Wang Y Y, et al. Robust optimization of static reserve planning with large- scale integration of wind power: A game theoretic approach. IEEE Transactions on Sustainable Energy, 2014, 5(2): 535-545.
  • 7Hu X, Ralph D. Using EPECs to model bilevel games in restructured electricity markets with locational prices. Operations Research, 2007, 55(5): 809-827.
  • 8Zugno M, Morales J M, Pinson P, et ai. A bilevel model for electricity retailers' participation in a demand response market environment. Energy Economics, 2013, 36: 182-197.
  • 9Von Stackelberg H. The Theory of the Market Economy. William Hodge, 1952.
  • 10Dantzig G B. Solving two-move games with perfect information. RAND Report P-1459, Santa Monica, California, 1958.

共引文献115

同被引文献75

引证文献7

二级引证文献77

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部