期刊文献+

基于改进支持向量机的人手动作模式识别方法 被引量:10

Novel method in pattern recognition of hand actions based on improved support vector machine
下载PDF
导出
摘要 为了提高基于表面肌电信号(sEMG)控制的手部运动康复器对人手多种动作模式的识别率,比较常规支持向量机(SVM)多类分类器的特点,提出改进的决策树支持向量机多类分类方法.该方法引入基于sEMG特征向量的类间距离可分性测度来指导决策树的构建,能够为每个SVM子分类器的训练提供识别率较高的样本划分方案,在提高决策树内部节点分类成功率的同时,简化了分类器结构.通过实验对比可知,新方法在20种手部动作模式的识别训练过程中,单项动作最低识别率较常规决策树方式提高了7.1%,平均识别率达到88.9%,训练速度较一对一支持向量机分类器提高了5.8%. A multi-classification method that employs an improved decision tree support vector machine(DT-SVM)was proposed after detailed comparison of the characteristics of the conventional support vector machine(SVM)multi-classifiers in order to improve the accuracy of hand actions recognition for hand movement rehabilitation device controlled by the surface electromyography(sEMG). The method introduced the measure of distance between classes based on sEMG feature vectors in order to guide the construction of decision tree.The method can provide a sample classification scheme with high recognition rate for the training of each SVM sub-classifier,which can further improve the classification of nodes in the decision tree and simplify the classifier's structure.Experiments for the recognizing process of the 20 kinds of hand motions were conducted.Results showed that the minimum recognition rate of single motion increased by 7.1%compared with the conventional DT-SVM,the average recognition rate reached 88.9%,and the training speed increased by 5.8% compared with the one-versus-one SVM.
作者 都明宇 鲍官军 杨庆华 王志恒 张立彬 DU Ming-yu, BAO Guan-jun, YANG Qing-hua, WANG Zhi-heng, ZHANG Li-bin(College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310014, China)
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2018年第7期1239-1246,共8页 Journal of Zhejiang University:Engineering Science
基金 国家自然科学基金资助项目(51775499) 浙江省自然科学基金资助项目(LQ15E050008) 浙江省教育厅科研资助项目(Y201121563) 北京市智能机器人与系统高精尖创新中心开放基金资助项目(2016IRS03)
关键词 表面肌电信号(sEMG) 类间距离 模式识别 支持向量机(SVM) 决策树 surface electromyography (sEMG);distance between classes;pattern recognition;support vector machine (SVM);decision tree
  • 相关文献

参考文献12

二级参考文献296

共引文献393

同被引文献85

引证文献10

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部