摘要
在Euler函数φ(n)的性质的基础上,利用整数分解的方法证明了对任意的正整数m,n,非线性方程φ(mn)=aφ(m)+bφ(n)+c^2(a,b,c为勾股数且gcd(a,b,c)=1)当(a,b,c)=(3,4,5),(5,12,13),(7,24,25)时无正整数解,并证明了当a,b为任意的一奇一偶,c为任意的奇数,且满足a^2+b^2=c^2,gcd(a,b)=1,2|b时,方程无正整数解.
In this paper, basing on the properties of Euler function φ(n), it is proved that for any positive integer m, n the nonlinear equation φ(mn) = aφ(m) + bφ(n) + c^2(a, b, c as the Pythagorean number and gcd(a, b, c) = 1)has no positive integer solution when(a, b, c) =(3, 4, 5),(5, 12, 13),(7, 24, 25) by integer factorization method.When a, b are any odd even pairs, c is any odd number, and a^2+ b^2= c^2, gcd(a, b) = 1, 2 | b are satisfied, it is proved that there is no positive integer solution.
作者
郑璐
高丽
郭梦媛
Zheng Lu;Gao Li;Guo Mengyuan(College of Mathematics and Computer Science,Yan'an University,Yan'an 716000,China)
出处
《纯粹数学与应用数学》
2018年第2期172-176,共5页
Pure and Applied Mathematics
基金
陕西省科技厅科学技术研究发展计划项目(2013JQ1019)
延安大学校级科研计划项目(YD2014-05)
延安大学研究生教育创新计划项目(YCX201830)