期刊文献+

一类害虫种群有疾病传播的害虫防治模型

Pest Control Model for a Class of Pest Population with Disease Spread
下载PDF
导出
摘要 考虑了脉冲投放病毒和脉冲投放天敌的害虫综合控制模型.运用Floquet乘子理论,脉冲微分方程比较定理,讨论了模型的害虫灭绝周期解全局渐进稳定性;选取内禀增长率为分支参数,利用分支定理,给出了系统存在正周期解的充分条件. The integrated pest control model of the pulsed-release virus and pulse releasing natural enemies is considered. By using the Floquet multiplier theory and the comparison theorem of impulsive differential equations, the global asymptotic stability of the pest extinction periodic solution is discussed,the intrinsic growth rate is chosen as the branch parameter, and the bifurcation theorem is used to give sufficient conditions for the existence of the positive periodic solution of the system.
作者 陈春艳 向中义 CHEN Chunyan;XIANG Zhongyi(School of Science,Hubei University for Nationalities,Enshi 445000,Chin)
出处 《湖北民族学院学报(自然科学版)》 CAS 2018年第2期150-155,共6页 Journal of Hubei Minzu University(Natural Science Edition)
基金 国家自然科学基金项目(11761031)
关键词 脉冲效应 周期解 全局渐进稳定性 分支 impulsive effects periodic solution global asymptotically stability bifurcation
  • 相关文献

参考文献1

二级参考文献15

  • 1Rabinowitz, P. H.: Some global results for nonlinear eigenvalue problems. J. Functional Analysis, 7, 487-513(1971).
  • 2Crandall, M. G., Rabinowitz, P. H.: Bifurcation from simple eigenvalues. J. Funct. Anal., 8, 321-340(1971).
  • 3Crandall, M. G., Rabinowitz, P. H.: Bifurcation, perturbation of simple eigenvalues, and linearized stability.Arch. Rat. Mech. Anal., 52, 161-180 (1973).
  • 4Bainov, D., Simeonov, P.: Impulsive differential equations: Periodic solution and applications. Longman,England, (1993).
  • 5Shulgin, B., Stone, L. et al.: Pulse vaccination strategy in the SIR epidemic model. Bull. Math. Biol, 60,1-26 (1998).
  • 6Lakmeche, A., Arino, O.: Bifurcation of nontrivial periodic solution of impulsive differential equations arising chemotherapeutic treatment. Dynamics of Continuous, Discrete and Impulsive System, 7, 265-287(2000).
  • 7Liu, X.: Impulsive stabilization and applications to population growth models. J. Math., 25(1), 381-395(1995).
  • 8Liu, x., Zhang, S.: A cell population model described by impulsive PDEs-exlstence and numerical approximation. Comput. Math. Appl., 36(8), 1-11 (1998).
  • 9Liu, X., Rohof, K.: Impulsive control of a Lotka-Volterra system. IMA Journal of Mathematical Control & Information, 15, 269-284 (1998).
  • 10Funasaki, E., Kot, M.: Invasion and chaos in a periodically pulsed Mass-Action Chemostat. Theoretical Population Biology, 44, 203-224 (1993).

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部