摘要
A theoretical analysis is presented to predict the nonlinear thermo-structural response of metallicsandwich panels with truss cores under through-thickness gradient temperature field, which is acommon service condition for metallic thermal protection system (TPS). The in-planetemperature distribution is assumed to be uniform, and through-thickness temperature field isdetermined by heat conduction. Two typical conditions are analyzed: nonlinear thermal bendingin fixed inside surface temperature, and thermal post-buckling in fixed temperature differencebetween two surfaces. Temperature-dependent mechanical properties are considered, andgradient shear stiffness and bending stiffness due to non-uniform temperature is included. Resultsindicate that the temperature-dependent material properties obviously affect bending resistance;however, the effect is negligible on post-buckling behavior. Influences of geometric parameters onthe thermo-structural behavior of the sandwich panel according to the present theoretical modelare discussed.
A theoretical analysis is presented to predict the nonlinear thermo-structural response of metallicsandwich panels with truss cores under through-thickness gradient temperature field, which is acommon service condition for metallic thermal protection system (TPS). The in-planetemperature distribution is assumed to be uniform, and through-thickness temperature field isdetermined by heat conduction. Two typical conditions are analyzed: nonlinear thermal bendingin fixed inside surface temperature, and thermal post-buckling in fixed temperature differencebetween two surfaces. Temperature-dependent mechanical properties are considered, andgradient shear stiffness and bending stiffness due to non-uniform temperature is included. Resultsindicate that the temperature-dependent material properties obviously affect bending resistance;however, the effect is negligible on post-buckling behavior. Influences of geometric parameters onthe thermo-structural behavior of the sandwich panel according to the present theoretical modelare discussed.
基金
The financial support from the National Natural Science Foundation of China (91016025, 11472276, 11602271, and 11332011)
the Defense Industrial Technology Development Program of China (JCKY2016130B009)