期刊文献+

基于K-means算法的地铁站台异物检测 被引量:5

Detection of Foreign Objects in Subway Outdoor Platform Based on K-means Algorithm
下载PDF
导出
摘要 针对地铁屏蔽门和列车门之间的间隙会产生夹人夹物等地铁运营安全事故隐患,提出一种基于K-means的地铁站台异物面检测方法。该方法通过采用人工构造光学背景,并且采用HSV颜色空间来提高检测的效率和准确度。算法采用K-means方法对车首摄像头拍摄车尾灯带图像进行目标提取,通过对目标的完整性计算来判断列车车体与屏蔽门缝隙是否存在空间异物。通过对真实视频数据进行实验,结果表明所提算法对光照变化具有很好的鲁棒性,可以准确检测出各种异物,能够辅助司机进行开车前的决策。 Aiming at the gap between subway screen door and train door,there is a hidden danger of accident in subway operation because of the pinch-in,and a detection method based on metro station surface is proposed. This method improves the efficiency and accuracy of the detection by employing a manual construction of the optical background and using the HSV color space. The algorithm uses the method to extract the target image of the car taillight with the camera of the vehicle head,and determines whether there is spatial foreign body in the gap between the car body and the screen door by calculating the completeness of the target. Experiments on real video data show that the proposed algorithm has good robustness to light changes and can detect various foreign objects accurately and can assist the driver in making decisions before driving.
作者 雷焕宇 刘伟铭 LEI Huan-yu;LIU Wei-ming(School of Civil Engineering and Transportation,South China University of Technology,Guangzhou 510641,China)
出处 《计算机与现代化》 2018年第6期42-46,共5页 Computer and Modernization
基金 "十三五"国家重点研发计划先进轨道交通重点专项(2016YFB1200402-07)
关键词 机器视觉 K-MEANS 异物检测 地铁 自适应光线 machine vision K-means foreign matter detection metro adaptive light
  • 相关文献

参考文献11

二级参考文献61

  • 1张琨,赵加建.安全防护装置在屏蔽门系统中的应用[J].城市轨道交通研究,2009,12(1):48-51. 被引量:20
  • 2陶志福.用C51系列单片机设计物体分级设备的测量光幕[J].国外电子元器件,2004(7):64-66. 被引量:1
  • 3曲立东.城轨交通环境与设备监控系统的结构比较[J].都市快轨交通,2006,19(3):90-92. 被引量:14
  • 4Tou J T,Gonzalez R C. Pattern recognition principle[M]. Addison Wesley,Reading,1974.
  • 5Krishma K, Murty M N. Genetic k-means algorithm[J].IEEE Trans on System,Man,and Cybernetics. Part B,1999,29(3):433-439.
  • 6Maulik U,Bandyopadhay S. Genetic algorithm-based clustering technique[J]. Pattern Recognition,2000,33(9):1455-1465.
  • 7HAYKINS.神经网络与机器学习[M].3版.申富饶,徐烨,郑俊,译.北京:机械工业出版社,2011:237.
  • 8Triem T H, Tamara A O. Design optimization of a hydrogen ad- vanced loop heat pipe for spacebased IR sensor and detector cry cooling[J]. SPIE, 2003, 5172:1120-1131.
  • 9Visioli A. Tuning of PID controllers with fuzzy logic[ C]//Proc of IEEE Int'l Conf on Control Theory and Application, 2001:69 - 81.
  • 10Hai-hui C. Mechanism Design and Mechanics Model of the Platform Screen Doors for Subways [J]. Journal of South ChinaUniversity of Technology (Natural Science), 2004(4): 018.

共引文献355

同被引文献35

引证文献5

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部